小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com模块七圆锥曲线(测试)(考试时间:120分钟试卷满分:150分)第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线是双曲线的一条渐近线,则该双曲线的离心率为()A.B.C.D.2.若拋物线上一点到焦点的距离为1,则点的横坐标是()A.B.C.0D.23.若动点在上移动,则点与点连线的中点的轨迹方程是()A.B.C.D.4.已知抛物线,过点的直线与抛物线交于两点,若,则直线的斜率是()A.B.C.D.5.已知是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,则双曲线的离心率为()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.已知是:上一点,过点作圆:的两条切线,切点分别为A,B,则当直线AB与平行时,直线AB的方程为()A.B.C.D.7.已知双曲线的左右焦点分别为,,P为双曲线在第一象限上的一点,若,则()A.B.C.14D.158.椭圆任意两条相互垂直的切线的交点轨迹为圆:,这个圆称为椭圆的蒙日圆.在圆上总存在点,使得过点能作椭圆的两条相互垂直的切线,则的取值范围是()A.B.C.D.二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.已知双曲线的两个焦点分别为,且满足条件,可以解得双曲线的方程为,则条件可以是()A.实轴长为4B.双曲线为等轴双曲线C.离心率为D.渐近线方程为10.已知圆,,则()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.直线的方程为B.过点作圆的切线有且仅有条C.两圆相交,且公共弦长为D.圆上到直线的距离为的点共有个11.已知抛物线的焦点为,准线与轴的交点为,过点且斜率为的直线与抛物线交于两个不同的点,则下列说法正确的有()A.当时,B.C.若直线的倾斜角分别为,则D.若点关于轴的对称点为点,则直线必恒过定点12.双曲线具有以下光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线平分该点与两焦点连线的夹角.已知分别为双曲线的左,右焦点,过右支上一点作双曲线的切线交轴于点,交轴于点,则()A.平面上点的最小值为B.直线的方程为C.过点作,垂足为,则(为坐标原点)D.四边形面积的最小值为4小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分。13.已知圆,过作圆的切线,则直线的倾斜角为.14.已知椭圆的右顶点、上顶点分别为A,B,直线与直线相交于点D,且点D到x轴的距离为a,则C的离心率为.15.已知双曲线的左,右焦点分别为,,过左焦点作直线与双曲线交于A,B两点(B在第一象限),若线段的中垂线经过点,且点到直线的距离为,则双曲线的离心率为.16.已知双曲线:的焦距为,过双曲线上任意一点作直线,分别平行于两条渐近线,且与两条渐近线分别交于点,.若四边形的面积为,则双曲线的方程为.四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步棸。17.(10分)已知点,直线及圆.(1)若直线与圆相切,求的值.(2)求过点的圆的切线方程.18.(12分)设椭圆经过点,且其左焦点坐标为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求椭圆的方程;(2)对角线互相垂直的四边形的四个顶点都在上,且两条对角线均过的右焦点,求的最小值.19.(12分)已知F是抛物线E:的焦点,是抛物线E上一点,与点F不重合,点F关于点M的对称点为P,且.(1)求抛物线E的标准方程;(2)若过点的直线与抛物线E交于A,B两点,求的最大值.20.(12分)在直角坐标系中,抛物线与直线交于两点.(1)若点的横坐标为4,求抛物线在点处的切线方程;(2)探究轴上是否存在点,使得当变动时,总有?若存在,求出点坐标;若不存在,请说明理由.21.(12分)小学、初中、高中各种试卷...