2024年新高考数学复习资料阶段检测二:基本初等函数(解析版).docx本文件免费下载 【共24页】

2024年新高考数学复习资料阶段检测二:基本初等函数(解析版).docx
2024年新高考数学复习资料阶段检测二:基本初等函数(解析版).docx
2024年新高考数学复习资料阶段检测二:基本初等函数(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com阶段检测(二)基本初等函数考试范围:基本初等函数;考试时间:150分钟;学校:___________姓名:___________班级:___________考号:___________一.选择题(共8小题)1.已知函数,的定义域均为,且,,若为偶函数,且(2),则A.5B.4C.3D.0【解答】解:,以为对称中心,且(1),,即,为偶函数,以轴为对称轴,,即,由知,,,,从而,即,的周期为4,的周期为4,故(2)(1).故选:.2.已知是定义在上的奇函数,且满足,当,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则A.0B.C.1D.【解答】解:因为是定义在上的奇函数,且满足,所以,,则,即,则,即是以4为周期的周期函数,又,当时,,所以(3)(1).故选:.3.已知函数的定义域是,函数的图象的对称中心是,若对任意的,,且,都有成立,(1),则不等式的解集为A.,,B.C.,,D.,,【解答】解:因为是向左平移1个单位长度得到,且函数的图象的对称中心是,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以的图象的对称中心是,故是上的奇函数,所以(1),对任意的,,且,都有成立,所以,令,所以根据单调性的定义可得在上单调递增,由是上的奇函数可得是,,上的偶函数所以在上单调递减,当时,不等式得到,矛盾;当时,转化成即(1),所以;当时,转化成,,所以,综上所述,不等式的解集为,,.故选:.4.设是定义在上的偶函数,对任意的,都有,且当,时,,则在区间,内关于的方程的根的个数为A.1B.2C.3D.4【解答】解:是定义在上的偶函数,对任意的,都有,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,即,即函数的周期是4.当,时,,,此时,即,,.由得:,分别作出函数和图象如图:则由图象可知两个图象的交点个数为4个,即方程的根的个数为是4个.故选:.5.游戏一共有20波,你在一波结束时每有点“收获”便获得点材料和经验,获得材料和经验后,你的收获增加,每波获得的经验都可以以的比例转化为收获,每波材料的通货膨胀率为,若你一开始拥5点收获,则20波结束时,你能获得的材料真实收益约为,,,,A.445B.447C.449D.451小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解答】解:设第波时收获为,则易知,则数列构成公比是1.25的等比数列,首项,则,每波材料的通货膨胀率为,第波时收获的真实收益为,由题意知20波结束时,你能获得的材料真实收益约为,又设,则,,即,即,则,即,注意到,故.故选:.6.设,,,则A.B.C.D.【解答】解:由题知,,,因为在定义域内单调递减,所以(3)(1),小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即,因为在定义域内单调递增,所以,即,因为在定义域内单调递增,所以(1)(2),即,综上:.故选:.7.已知,,,,,2,3,,使恒成立的有序数对有A.2个B.4个C.6个D.8个【解答】解:因为,,所以的定义域为,要想恒成立,即恒成立,即恒成立,恒成立,设,,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以当时,(3),使恒成立的可取1,所以当时,(1),使恒成立的可取1,2,3,所以一共有,,,共4种.故选:.8.若关于的不等式在上恒成立,则实数的取值范围是A.,,B.,C.,,D.,【解答】解:由对数函数的定义可知,且,当时,单调递增,,故因为,则,所以,解得,与求交集,得到,当时,单调递减,,故,由于当时,,故此时无解,综上:实数的取值范围是,.故选:.二.多选题(共4小题)9.已知函数,且的对称中心为,当,时,,则下列选项正确的是小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.在上单调递减B.的最小值是C.在上的函数值大于0D.的图像关于直线对称【解答】解:根据可得为偶函数,对称中心为,可知的图象关于对称,结合,时,,可画出的部分图象如下:由图象可知:的最...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年上海市继光高级中学高考数学二模试卷(六)(理科).doc
2014年上海市继光高级中学高考数学二模试卷(六)(理科).doc
免费
0下载
高中2024版《微专题》·数学(文)·统考版专练 13.docx
高中2024版《微专题》·数学(文)·统考版专练 13.docx
免费
0下载
2020年上海高考数学真题及解析.doc
2020年上海高考数学真题及解析.doc
免费
18下载
2024年新高考数学复习资料第04讲 基本不等式(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第04讲 基本不等式(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2017年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版).doc
2017年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版).doc
免费
13下载
2008年高考数学真题(文科)(北京自主命题)(解析版).doc
2008年高考数学真题(文科)(北京自主命题)(解析版).doc
免费
0下载
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷).pdf
免费
0下载
1991年四川高考文科数学真题及答案.doc
1991年四川高考文科数学真题及答案.doc
免费
20下载
2003年河南高考理科数学真题及答案.doc
2003年河南高考理科数学真题及答案.doc
免费
17下载
2016年高考数学试卷(理)(新课标Ⅰ)(空白卷) (2).pdf
2016年高考数学试卷(理)(新课标Ⅰ)(空白卷) (2).pdf
免费
0下载
2021年上海市夏季高考数学试卷(word解析版).doc
2021年上海市夏季高考数学试卷(word解析版).doc
免费
8下载
2025年新高考数学复习资料重难点突破01 奔驰定理与四心问题(五大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破01 奔驰定理与四心问题(五大题型)(原卷版).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第10章 §10.8 概率与统计的综合问题.pptx
2024年高考数学一轮复习(新高考版) 第10章 §10.8 概率与统计的综合问题.pptx
免费
0下载
2023年高考数学试卷(理)(全国乙卷)(解析卷) (9).docx
2023年高考数学试卷(理)(全国乙卷)(解析卷) (9).docx
免费
0下载
精品解析:江苏省南通市如皋市2023届高三下学期高考适应性考试(二)数学试题(原卷版).docx
精品解析:江苏省南通市如皋市2023届高三下学期高考适应性考试(二)数学试题(原卷版).docx
免费
0下载
2024年新高考数学复习资料素养拓展20 累加、累乘、构造法求数列通项公式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展20 累加、累乘、构造法求数列通项公式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2025年新高考数学复习资料第02讲 三角恒等变换(十一大题型)(练习)(解析版).docx
2025年新高考数学复习资料第02讲 三角恒等变换(十一大题型)(练习)(解析版).docx
免费
0下载
2022届江苏省南通市基地学校高三下学期第四次大联考数学试题(解析版).docx
2022届江苏省南通市基地学校高三下学期第四次大联考数学试题(解析版).docx
免费
0下载
2002年上海高考数学试卷(理)(自主命题)(空白卷).doc
2002年上海高考数学试卷(理)(自主命题)(空白卷).doc
免费
0下载
辽宁省沈阳市浑南区东北育才学校2022-2023学年高二下学期第一次(4月)月考数学试题.pdf
辽宁省沈阳市浑南区东北育才学校2022-2023学年高二下学期第一次(4月)月考数学试题.pdf
免费
25下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群