2024年新高考数学复习资料专题21 函数嵌套问题(含2021-2023高考真题)(解析版).docx本文件免费下载 【共27页】

2024年新高考数学复习资料专题21 函数嵌套问题(含2021-2023高考真题)(解析版).docx
2024年新高考数学复习资料专题21 函数嵌套问题(含2021-2023高考真题)(解析版).docx
2024年新高考数学复习资料专题21 函数嵌套问题(含2021-2023高考真题)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题21函数嵌套问题一、单选题1.已知函数,则关于的方程实数解的个数为()A.4B.5C.3D.2【解析】因为,解之得或2,当时,;当时,,当且仅当时等号成立,所以,,的图象如图:由图可知使得或的点有4个.故选:A.2.已知函数则函数的零点个数是()A.2B.3C.4D.5【解析】设,则,令,即,转化为与的交点,画出图像如图所示:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由图像可知,,所以函数有一个解,有两个解,故的零点个数是4个.故选:3.已知函数,若函数有6个不同的零点,且最小的零点为,则()A.6B.C.2D.【解析】由函数的图象,经过沿轴翻折变换,可得函数的图象,再经过向右平移1个单位,可得的图象,最终经过沿轴翻折变换,可得的图象,如下图:则函数的图象关于直线对称,令,则,由图可知,当时,有个零点,当时,有个零点,因为函数有6个不同的零点,所以函数有两个零点,一个等于,一个大于,又因为的最小的零点为,且,所以函数的两个零点,一个等于,一个等于,根据韦达定理得,,即,,则.故选:B.4.已知函数,则函数零点个数最多是()A.10B.12C.14D.16小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】画出的图像,如图所示,由,令,得,设,由图像可知,则,得的图像,如图所示,由图像可知,,①当时,即,没有根;②当时,即,此时有3个根,,,当时,即,有3个根,当时,即,有4个根,当时,即,有4个根,故时,有11个根;③当时,,此时有三个根,,当时,即,有4个根,当时,即,有4个根,当时,即,有4个根,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故时,有12个根;综上所述,最多有12个根,故选:B.5.已知函数,函数恰有5个零点,则m的取值范围是()A.B.C.D.【解析】当时,.由,得,由,得,则在上单调递减,在上单调递增,故的大致图象如图所示.设,则,由图可知当时,有且只有1个实根,则最多有3个不同的实根,不符合题意.当时,的解是,.有2个不同的实根,有2个不同的实根,则有4个不同的实根,不符合题意.当时,有3个不同的实根,,,且,,.有2个不同的实根,有2个不同的实根,有3个不同的实根,则有7个不同的实根,不符合题意.当时,有2个不同的实根,,且,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com有2个不同的实根,有3个不同的实根,则有5个不同的实根,符合题意.当时,有2个不同的实根,,且,,有2个不同的实根,,有2个不同的实根,则有4个不同的实根,不符合题意.当时,有且只有1个实根,则最多有3个不同的实根,不符合题意,综上,m的取值范围是.故选:C.6.已知函数(为自然对数的底数),则函数的零点个数为()A.3B.5C.7D.9【解析】设,令可得:,对于,,故在处切线的斜率值为,设与相切于点,切线斜率,则切线方程为:,即,解得:;由于,故作出与图象如下图所示,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com与有四个不同交点,即与有四个不同交点,设三个交点为,由图象可知:,作出函数的图象如图,由此可知与无交点,与有三个不同交点,与各有两个不同交点,的零点个数为7个,故选:C7.已知函数是上的奇函数,当时,.若关于x的方程有且仅有两个不相等的实数解则实数m的取值范围是()A.B.C.D.【解析】由题设,若,则,所以,值域为R,函数图象如下:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,只有一个与之对应;当时,有两个对应自变量,记为,则;当时,有三个对应自变量且;当时,有两个对应自变量,记为,则;当时,有一个与之对应;令,则,要使有且仅有两个不相等的实数解,若有三个解,则,此时有7个解,不满足;若有两个解且,此时和各有一个解,结合图象知,不存在这样的,故不存在对应的m;若有一个解,则有两个解,此时,所以对应的,综上,.故选:C.8.已知函数,若函数有6个不同的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
27下载
2014年高考数学试卷(理)(湖南)(解析卷).pdf
2014年高考数学试卷(理)(湖南)(解析卷).pdf
免费
0下载
2023年高考数学试卷(理)(全国乙卷)(解析卷) (9).docx
2023年高考数学试卷(理)(全国乙卷)(解析卷) (9).docx
免费
0下载
2009年高考数学试卷(理)(天津)(解析卷) (1).docx
2009年高考数学试卷(理)(天津)(解析卷) (1).docx
免费
0下载
2024年新高考数学复习资料素养拓展25 立体几何中的截面问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展25 立体几何中的截面问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2008年高考数学试卷(理)(辽宁)(解析卷).doc
2008年高考数学试卷(理)(辽宁)(解析卷).doc
免费
0下载
2017年广东高考(理科)数学(原卷版).doc
2017年广东高考(理科)数学(原卷版).doc
免费
26下载
高中数学·必修第一册(北师大版)课时作业WORD  课时作业(二十四).doc
高中数学·必修第一册(北师大版)课时作业WORD 课时作业(二十四).doc
免费
28下载
2022届江苏省南京市江宁高级中学高三下学期适应性考试数学试题(解析版).docx
2022届江苏省南京市江宁高级中学高三下学期适应性考试数学试题(解析版).docx
免费
0下载
安徽A10联盟2023届高考最后一卷数学试题.pdf
安徽A10联盟2023届高考最后一卷数学试题.pdf
免费
18下载
2012年高考数学试卷(理)(天津)(解析卷).doc
2012年高考数学试卷(理)(天津)(解析卷).doc
免费
1下载
2008年高考数学试卷(文)(湖南)(解析卷) .pdf
2008年高考数学试卷(文)(湖南)(解析卷) .pdf
免费
0下载
2010年高考重庆理科数学试题及答案(精校版).doc
2010年高考重庆理科数学试题及答案(精校版).doc
免费
4下载
高中2024版考评特训卷·数学·理科【统考版】点点练 24.docx
高中2024版考评特训卷·数学·理科【统考版】点点练 24.docx
免费
0下载
1993年江苏高考文科数学真题及答案.doc
1993年江苏高考文科数学真题及答案.doc
免费
13下载
高考数学专题03 不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题03 不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
2014年江西省高考数学试卷(理科).doc
2014年江西省高考数学试卷(理科).doc
免费
0下载
高中数学状元笔记 06几何&统计(已去水印).pdf
高中数学状元笔记 06几何&统计(已去水印).pdf
免费
19下载
1995年云南高考文科数学真题及答案.doc
1995年云南高考文科数学真题及答案.doc
免费
23下载
2023《微专题·小练习》·数学·新教材·XL-3专练 26.docx
2023《微专题·小练习》·数学·新教材·XL-3专练 26.docx
免费
20下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群