2024年新高考数学复习资料专题09 双曲线的焦点弦、中点弦、弦长问题(解析版).docx本文件免费下载 【共20页】

2024年新高考数学复习资料专题09 双曲线的焦点弦、中点弦、弦长问题(解析版).docx
2024年新高考数学复习资料专题09 双曲线的焦点弦、中点弦、弦长问题(解析版).docx
2024年新高考数学复习资料专题09 双曲线的焦点弦、中点弦、弦长问题(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题09双曲线的焦点弦、中点弦、弦长问题限时:120分钟满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知双曲线C:的一条渐近线方程是,过其左焦点作斜率为2的直线l交双曲线C于A,B两点,则截得的弦长()A.7B.8C.9D.10【解析】双曲线C:的一条渐近线方程是,,即左焦点,,,,,双曲线C的方程为易知直线l的方程为,设,,由,消去y可得,,故选:D2.已知为双曲线上两点,且线段的中点坐标为,则直线的斜率为()A.B.C.D.【解析】设,则有,,两式相减得到,又线段的中点坐标为,所以,得到,所以的斜率为.故选:B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.已知双曲线与直线相交于A、B两点,弦AB的中点M的横坐标为,则双曲线C的渐近线方程为()A.B.C.D.【解析】设,,则,由点差法得. ,∴,,∴,又,∴,∴渐近线方程为.故选:A.4.已知双曲线的左、右焦点分别为、,直线与双曲线交于,两点,若,则的面积等于()A.18B.10C.9D.6【解析】直线与双曲线交于,两点,若,则四边形为矩形,所以,,由双曲线可得,,则,所以,所以,又,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,解得,所以.故选:C.5.已知双曲线,过点的直线l与双曲线C交于M、N两点,若P为线段MN的中点,则弦长|MN|等于()A.B.C.D.【解析】由题设,直线l的斜率必存在,设过的直线MN为,联立双曲线:设,则,所以,解得,则,.弦长|MN|.故选:D.6.已知,分别为双曲线的左、右焦点,点P在双曲线的右支上,且位于第一象限,若直线的斜率为,则的内切圆的面积为()A.B.C.D.【解析】设,由题意知,直线的斜率为,则直线的方程为,∴,化简整理得,即,∴或(舍去),则,即,∴,,设的内切圆的圆心为Q,半径为r,连接,,,则由,得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴,得,(利用等面积法求内切圆的半径)故的内切圆的面积为.故选:B.7.已知为坐标原点,双曲线的右焦点为,以为直径的圆与的两条渐近线分别交于与原点不重合的两点,,若,则四边形的面积为()A.6B.C.D.4【解析】设与轴交于点,由双曲线的对称性可知轴,,,又因为,所以,即,所以,因为点在以为直径的圆上,所以,所在的渐近线方程为,点到渐进线距离为,所以,所以,,则,所以,故选:B小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com8.设A,B分别是双曲线x2-=1的左、右顶点,设过P的直线PA,PB与双曲线分别交于点M,N,直线MN交x轴于点Q,过Q的直线交双曲线的右支于S,T两点,且=2,则△BST的面积为()A.B.C.D.【解析】双曲线x2-=1的左、右顶点分别为A(-1,0),B(1,0),又P,∴直线PA的方程为x=-1,PB的方程为x=-+1,联立可得y2-=0,解得y=0或y=,将y=代入x=-1可得x=,即有M,联立可得y2-y=0,解得y=0或y=,将y=代入x=-+1,可得x=,即N小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设Q(s,0),由M,N,Q三点共线,可得kMN=kQN,即有=,将M,N的坐标代入化简可得=,解得s=2,即Q(2,0),设过Q的直线方程为x=my+2,联立得(3m2-1)y2+12my+9=0,设S(x1,y1),T(x2,y2),可得y1+y2=-,y1y2=,Δ=144m2-36(3m2-1)>0恒成立,又=2,∴y1=-2y2,∴-2·=,解得m2=,可得S△BST=|BQ|·|y1-y2|=|y1-y2|==·=3·=故选:A.二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.已知,分别是双曲线:的左、右焦点,点是该双曲线的一条渐近线上的一点,并且以线段为直径的圆经过点,则()A.的面积为B.点的横坐标为2或C.的渐近线方程为D.以线段为直径的圆的方程为【解析】由双曲线方程知,,所以双曲线的渐近线方程为,故C错误;又,所以为直径的圆方程为,故D错误;小学、初中、高中各种试卷真题知识归纳文案合同PPT等...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
27下载
2014年高考数学试卷(理)(湖南)(解析卷).pdf
2014年高考数学试卷(理)(湖南)(解析卷).pdf
免费
0下载
2023年高考数学试卷(理)(全国乙卷)(解析卷) (9).docx
2023年高考数学试卷(理)(全国乙卷)(解析卷) (9).docx
免费
0下载
2009年高考数学试卷(理)(天津)(解析卷) (1).docx
2009年高考数学试卷(理)(天津)(解析卷) (1).docx
免费
0下载
2024年新高考数学复习资料素养拓展25 立体几何中的截面问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展25 立体几何中的截面问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2008年高考数学试卷(理)(辽宁)(解析卷).doc
2008年高考数学试卷(理)(辽宁)(解析卷).doc
免费
0下载
2017年广东高考(理科)数学(原卷版).doc
2017年广东高考(理科)数学(原卷版).doc
免费
26下载
高中数学·必修第一册(北师大版)课时作业WORD  课时作业(二十四).doc
高中数学·必修第一册(北师大版)课时作业WORD 课时作业(二十四).doc
免费
28下载
2022届江苏省南京市江宁高级中学高三下学期适应性考试数学试题(解析版).docx
2022届江苏省南京市江宁高级中学高三下学期适应性考试数学试题(解析版).docx
免费
0下载
安徽A10联盟2023届高考最后一卷数学试题.pdf
安徽A10联盟2023届高考最后一卷数学试题.pdf
免费
18下载
2012年高考数学试卷(理)(天津)(解析卷).doc
2012年高考数学试卷(理)(天津)(解析卷).doc
免费
1下载
2008年高考数学试卷(文)(湖南)(解析卷) .pdf
2008年高考数学试卷(文)(湖南)(解析卷) .pdf
免费
0下载
2010年高考重庆理科数学试题及答案(精校版).doc
2010年高考重庆理科数学试题及答案(精校版).doc
免费
4下载
高中2024版考评特训卷·数学·理科【统考版】点点练 24.docx
高中2024版考评特训卷·数学·理科【统考版】点点练 24.docx
免费
0下载
1993年江苏高考文科数学真题及答案.doc
1993年江苏高考文科数学真题及答案.doc
免费
13下载
高考数学专题03 不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题03 不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
2014年江西省高考数学试卷(理科).doc
2014年江西省高考数学试卷(理科).doc
免费
0下载
高中数学状元笔记 06几何&统计(已去水印).pdf
高中数学状元笔记 06几何&统计(已去水印).pdf
免费
19下载
1995年云南高考文科数学真题及答案.doc
1995年云南高考文科数学真题及答案.doc
免费
23下载
2023《微专题·小练习》·数学·新教材·XL-3专练 26.docx
2023《微专题·小练习》·数学·新教材·XL-3专练 26.docx
免费
20下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群