2024年新高考数学复习资料押新高考第8题 函数的综合应用(解析版).docx本文件免费下载 【共41页】

2024年新高考数学复习资料押新高考第8题 函数的综合应用(解析版).docx
2024年新高考数学复习资料押新高考第8题 函数的综合应用(解析版).docx
2024年新高考数学复习资料押新高考第8题 函数的综合应用(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押新高考8题函数的综合应用考点4年考题考情分析函数的综合应用2023年新高考Ⅰ卷第11题2023年新高考Ⅱ卷第11题2022年新高考Ⅰ卷第7、10、12题函数的综合会以单选题、多选题、填空题、解答题4类题型进行考查,通常伴随着导数的考查,在单选题中难度较难,纵观近几年的新高考试题,分别以导数为背景命题考查极值点、零点、函数值大小比较、函数的基本性质、最值及切线方程等知识点,本内容也是新高考冲刺复习的重点复习内容。可以预测2024年新高考命题方向将继续以导数综合应用问题展开命题.1.(2023·新高考Ⅰ卷高考真题第11题)已知函数的定义域为,,则().A.B.C.是偶函数D.为的极小值点【答案】ABC【分析】方法一:利用赋值法,结合函数奇偶性的判断方法可判断选项ABC,举反例即可排除选项D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com方法二:选项ABC的判断与方法一同,对于D,可构造特殊函数进行判断即可.【详解】方法一:因为,对于A,令,,故正确.对于B,令,,则,故B正确.对于C,令,,则,令,又函数的定义域为,所以为偶函数,故正确,对于D,不妨令,显然符合题设条件,此时无极值,故错误.方法二:因为,对于A,令,,故正确.对于B,令,,则,故B正确.对于C,令,,则,令,又函数的定义域为,所以为偶函数,故正确,对于D,当时,对两边同时除以,得到,故可以设,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当肘,,则,令,得;令,得;故在上单调递减,在上单调递增,因为为偶函数,所以在上单调递增,在上单调递减,显然,此时是的极大值,故D错误.故选:.2.(2023·新高考Ⅱ卷高考真题第11题)若函数既有极大值也有极小值,则().A.B.C.D.【答案】BCD【分析】求出函数的导数,由已知可得在上有两个变号零点,转化为一元二次方程有两个不等的正根判断作答.【详解】函数的定义域为,求导得,因为函数既有极大值也有极小值,则函数在上有两个变号零点,而,因此方程有两个不等的正根,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com于是,即有,,,显然,即,A错误,BCD正确.故选:BCD3.(2022·新高考Ⅰ卷高考真题第7题)设,则()A.B.C.D.【答案】C【分析】构造函数,导数判断其单调性,由此确定的大小.【详解】方法一:构造法设,因为,当时,,当时,所以函数在单调递减,在上单调递增,所以,所以,故,即,所以,所以,故,所以,故,设,则,令,,当时,,函数单调递减,当时,,函数单调递增,又,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以当时,,所以当时,,函数单调递增,所以,即,所以故选:C.方法二:比较法解:,,,①,令则,故在上单调递减,可得,即,所以;②,令则,令,所以,所以在上单调递增,可得,即,所以在上单调递增,可得,即,所以故4.(2022·新高考Ⅰ卷高考真题第10题)已知函数,则()A.有两个极值点B.有三个零点C.点是曲线的对称中心D.直线是曲线的切线【答案】AC【分析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】由题,,令得或,令得,所以在,上单调递增,上单调递减,所以是极值点,故A正确;因,,,所以,函数在上有一个零点,当时,,即函数在上无零点,综上所述,函数有一个零点,故B错误;令,该函数的定义域为,,则是奇函数,是的对称中心,将的图象向上移动一个单位得到的图象,所以点是曲线的对称中心,故C正确;令,可得,又,当切点为时,切线方程为,当切点为时,切线方程为,故D错误.故选:AC.5.(2022·新高考Ⅰ卷高考真题第12题)已知函数及其导函数的定义域均为,记,若,均为偶函数,则()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案】BC【分析】方法一:转化题设...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料模拟冲刺卷04(新高考九省联考新题型)(原卷版).docx
2024年新高考数学复习资料模拟冲刺卷04(新高考九省联考新题型)(原卷版).docx
免费
0下载
2024年高考押题预测卷数学(新高考卷01)(参考答案).docx
2024年高考押题预测卷数学(新高考卷01)(参考答案).docx
免费
13下载
2008年广东高考(理科)数学(原卷版).doc
2008年广东高考(理科)数学(原卷版).doc
免费
30下载
1993年福建高考文科数学真题及答案.doc
1993年福建高考文科数学真题及答案.doc
免费
4下载
精品解析:上海市奉贤区2023届高三二模数学试题(原卷版).docx
精品解析:上海市奉贤区2023届高三二模数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料第03讲 等式与不等式的性质(五大题型)(讲义)(原卷版).docx
2025年新高考数学复习资料第03讲 等式与不等式的性质(五大题型)(讲义)(原卷版).docx
免费
0下载
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (2).pdf
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (2).pdf
免费
0下载
2014年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).doc
2014年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).doc
免费
15下载
2024年新高考数学复习资料专题2.4 函数的图象与函数的零点问题【八大题型】(举一反三)(新高考专用)(解析版).docx
2024年新高考数学复习资料专题2.4 函数的图象与函数的零点问题【八大题型】(举一反三)(新高考专用)(解析版).docx
免费
0下载
高考数学专题12 球体的外接与内切小题综合(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
高考数学专题12 球体的外接与内切小题综合(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第六章  第3讲 平面向量的数量积(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第六章 第3讲 平面向量的数量积(含解析).docx
免费
0下载
2022·微专题·小练习·数学·理科【统考版】专练57.docx
2022·微专题·小练习·数学·理科【统考版】专练57.docx
免费
29下载
专题05 立体几何(选填题)(原卷版).docx
专题05 立体几何(选填题)(原卷版).docx
免费
0下载
2024年新高考数学复习资料第五章 三角函数(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)参考答案.docx
2024年新高考数学复习资料第五章 三角函数(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)参考答案.docx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(九).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(九).docx
免费
0下载
高中2022·微专题·小练习·数学·文科【统考版】专练8.docx
高中2022·微专题·小练习·数学·文科【统考版】专练8.docx
免费
0下载
2024年新高考数学复习资料第56讲 立体几何中的切接问题(微专题)(解析版).docx
2024年新高考数学复习资料第56讲 立体几何中的切接问题(微专题)(解析版).docx
免费
0下载
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)(原卷版).docx
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)(原卷版).docx
免费
1下载
2025年新高考数学复习资料2025高考总复习专项复习--一元函数的导数及其应用专题四(含解析).doc
2025年新高考数学复习资料2025高考总复习专项复习--一元函数的导数及其应用专题四(含解析).doc
免费
0下载
2025年新高考数学复习资料高考仿真重难点训练02  函数的概念与性质(解析版).docx
2025年新高考数学复习资料高考仿真重难点训练02 函数的概念与性质(解析版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群