2024年新高考数学复习资料押新高考第14题 立体几何综合(原卷版).docx本文件免费下载 【共11页】

2024年新高考数学复习资料押新高考第14题 立体几何综合(原卷版).docx
2024年新高考数学复习资料押新高考第14题 立体几何综合(原卷版).docx
2024年新高考数学复习资料押新高考第14题 立体几何综合(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押新高考14题立体几何综合考点4年考题考情分析立体几何综合2023年新高考Ⅰ卷第12题2022年新高考Ⅰ卷第8题2022年新高考Ⅱ卷第11题2021年新高考Ⅰ卷第12题立体几何会以单选题、多选题、填空题、解答题4类题型进行考查,也常在压轴题位置进行考查,难度较难,纵观近几年的新高考试题,压轴题分别考查以正方体为出题背景的相关几何体的体积计算、正四棱锥的外接球及体积范围、锥体体积的相关计算、空间向量的计算等综合问题,本内容是新高考冲刺复习的重点复习内容。可以预测2024年新高考命题方向将继续以立体几何压轴内容等综合问题展开命题.1.(2023·新高考Ⅰ卷高考真题第12题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为的球体B.所有棱长均为的四面体C.底面直径为,高为的圆柱体D.底面直径为,高为的圆柱体2.(2023·新高考Ⅰ卷高考真题第8题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.3.(2022·新高考Ⅱ卷高考真题第11题)如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则()A.B.C.D.4.(2021·新高考Ⅰ卷高考真题第12题)在正三棱柱中,,点满足,其中,,则()A.当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点,使得D.当时,有且仅有一个点,使得平面小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.立体几何基础公式所有椎体体积公式:,所有柱体体积公式:,球体体积公式:球体表面积公式:,圆柱:圆锥:2.长方体(正方体、正四棱柱)的体对角线的公式(1)已知长宽高求体对角线:(2)已知共点三面对角线求体对角线:3.棱长为的正四面体的内切球的半径为,外接球的半径为.4.欧拉定理(欧拉公式)(简单多面体的顶点数V、棱数E和面数F).(1)=各面多边形边数和的一半.特别地,若每个面的边数为的多边形,则面数F与棱数E的关系:;(2)若每个顶点引出的棱数为,则顶点数V与棱数E的关系:.5.空间的线线平行或垂直设,,则;.5.夹角公式小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设,b=,则.6.异面直线所成角=(其中()为异面直线所成角,分别表示异面直线的方向向量)7.直线与平面所成角,(为平面的法向量).8..二面角的平面角(,为平面,的法向量).9.异面直线间的距离(是两异面直线,其公垂向量为,分别是上任一点,为间的距离).10.点到平面的距离(为平面的法向量,是经过面的一条斜线,).1.(2024·全国·模拟预测)已知三棱柱中,是边长为2的等边三角形,四边形为菱形,,平面平面,为的中点,为的中点,则三棱锥小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com的外接球的表面积为.2.(2024·全国·模拟预测)如图,在直三棱柱中,,分别为线段,的中点,,,平面平面,则四面体ABMN的外接球的表面积为.3.(2024·全国·模拟预测)某礼品生产厂准备给如图所示的八面体形玻璃制品设计一个球形包装盒.已知该八面体可以看成由一个棱长为的大正四面体截去四个全等的棱长均为的小正四面体得到的,且小正四面体的其中一个顶点为大正四面体的顶点,则该球形包装盒的半径的最小值为.(不考虑包装盒的质量、厚度等)4.(2024·全国·模拟预测)如图,在长方体中,,,M,N分别为BC,的中点,点P在矩形内运动(包括边界),若平面AMN,则取最小值时,三棱锥的体积为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.(2024·全国·模拟预测)如图,该“四角反棱柱”是由两个相互平行且全等的正方形经过旋转、连接而成,其侧面均为等边三角形,则该“四角反棱柱”外接球的表面积与侧面面积的比为.6.(2024·全国·模拟预测)已知圆锥的母线,侧面积为,则圆锥的内切球半径为;若正四面体能在圆锥内任...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料模拟冲刺卷04(新高考九省联考新题型)(原卷版).docx
2024年新高考数学复习资料模拟冲刺卷04(新高考九省联考新题型)(原卷版).docx
免费
0下载
2024年高考押题预测卷数学(新高考卷01)(参考答案).docx
2024年高考押题预测卷数学(新高考卷01)(参考答案).docx
免费
13下载
2008年广东高考(理科)数学(原卷版).doc
2008年广东高考(理科)数学(原卷版).doc
免费
30下载
1993年福建高考文科数学真题及答案.doc
1993年福建高考文科数学真题及答案.doc
免费
4下载
精品解析:上海市奉贤区2023届高三二模数学试题(原卷版).docx
精品解析:上海市奉贤区2023届高三二模数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料第03讲 等式与不等式的性质(五大题型)(讲义)(原卷版).docx
2025年新高考数学复习资料第03讲 等式与不等式的性质(五大题型)(讲义)(原卷版).docx
免费
0下载
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (2).pdf
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (2).pdf
免费
0下载
2014年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).doc
2014年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).doc
免费
15下载
2024年新高考数学复习资料专题2.4 函数的图象与函数的零点问题【八大题型】(举一反三)(新高考专用)(解析版).docx
2024年新高考数学复习资料专题2.4 函数的图象与函数的零点问题【八大题型】(举一反三)(新高考专用)(解析版).docx
免费
0下载
高考数学专题12 球体的外接与内切小题综合(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
高考数学专题12 球体的外接与内切小题综合(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第六章  第3讲 平面向量的数量积(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第六章 第3讲 平面向量的数量积(含解析).docx
免费
0下载
2022·微专题·小练习·数学·理科【统考版】专练57.docx
2022·微专题·小练习·数学·理科【统考版】专练57.docx
免费
29下载
专题05 立体几何(选填题)(原卷版).docx
专题05 立体几何(选填题)(原卷版).docx
免费
0下载
2024年新高考数学复习资料第五章 三角函数(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)参考答案.docx
2024年新高考数学复习资料第五章 三角函数(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)参考答案.docx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(九).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(九).docx
免费
0下载
高中2022·微专题·小练习·数学·文科【统考版】专练8.docx
高中2022·微专题·小练习·数学·文科【统考版】专练8.docx
免费
0下载
2024年新高考数学复习资料第56讲 立体几何中的切接问题(微专题)(解析版).docx
2024年新高考数学复习资料第56讲 立体几何中的切接问题(微专题)(解析版).docx
免费
0下载
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)(原卷版).docx
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)(原卷版).docx
免费
1下载
2025年新高考数学复习资料2025高考总复习专项复习--一元函数的导数及其应用专题四(含解析).doc
2025年新高考数学复习资料2025高考总复习专项复习--一元函数的导数及其应用专题四(含解析).doc
免费
0下载
2025年新高考数学复习资料高考仿真重难点训练02  函数的概念与性质(解析版).docx
2025年新高考数学复习资料高考仿真重难点训练02 函数的概念与性质(解析版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群