2024年新高考数学复习资料押新高考第14题 立体几何综合(原卷版).docx本文件免费下载 【共11页】

2024年新高考数学复习资料押新高考第14题 立体几何综合(原卷版).docx
2024年新高考数学复习资料押新高考第14题 立体几何综合(原卷版).docx
2024年新高考数学复习资料押新高考第14题 立体几何综合(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押新高考14题立体几何综合考点4年考题考情分析立体几何综合2023年新高考Ⅰ卷第12题2022年新高考Ⅰ卷第8题2022年新高考Ⅱ卷第11题2021年新高考Ⅰ卷第12题立体几何会以单选题、多选题、填空题、解答题4类题型进行考查,也常在压轴题位置进行考查,难度较难,纵观近几年的新高考试题,压轴题分别考查以正方体为出题背景的相关几何体的体积计算、正四棱锥的外接球及体积范围、锥体体积的相关计算、空间向量的计算等综合问题,本内容是新高考冲刺复习的重点复习内容。可以预测2024年新高考命题方向将继续以立体几何压轴内容等综合问题展开命题.1.(2023·新高考Ⅰ卷高考真题第12题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为的球体B.所有棱长均为的四面体C.底面直径为,高为的圆柱体D.底面直径为,高为的圆柱体2.(2023·新高考Ⅰ卷高考真题第8题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.3.(2022·新高考Ⅱ卷高考真题第11题)如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则()A.B.C.D.4.(2021·新高考Ⅰ卷高考真题第12题)在正三棱柱中,,点满足,其中,,则()A.当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点,使得D.当时,有且仅有一个点,使得平面小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.立体几何基础公式所有椎体体积公式:,所有柱体体积公式:,球体体积公式:球体表面积公式:,圆柱:圆锥:2.长方体(正方体、正四棱柱)的体对角线的公式(1)已知长宽高求体对角线:(2)已知共点三面对角线求体对角线:3.棱长为的正四面体的内切球的半径为,外接球的半径为.4.欧拉定理(欧拉公式)(简单多面体的顶点数V、棱数E和面数F).(1)=各面多边形边数和的一半.特别地,若每个面的边数为的多边形,则面数F与棱数E的关系:;(2)若每个顶点引出的棱数为,则顶点数V与棱数E的关系:.5.空间的线线平行或垂直设,,则;.5.夹角公式小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设,b=,则.6.异面直线所成角=(其中()为异面直线所成角,分别表示异面直线的方向向量)7.直线与平面所成角,(为平面的法向量).8..二面角的平面角(,为平面,的法向量).9.异面直线间的距离(是两异面直线,其公垂向量为,分别是上任一点,为间的距离).10.点到平面的距离(为平面的法向量,是经过面的一条斜线,).1.(2024·全国·模拟预测)已知三棱柱中,是边长为2的等边三角形,四边形为菱形,,平面平面,为的中点,为的中点,则三棱锥小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com的外接球的表面积为.2.(2024·全国·模拟预测)如图,在直三棱柱中,,分别为线段,的中点,,,平面平面,则四面体ABMN的外接球的表面积为.3.(2024·全国·模拟预测)某礼品生产厂准备给如图所示的八面体形玻璃制品设计一个球形包装盒.已知该八面体可以看成由一个棱长为的大正四面体截去四个全等的棱长均为的小正四面体得到的,且小正四面体的其中一个顶点为大正四面体的顶点,则该球形包装盒的半径的最小值为.(不考虑包装盒的质量、厚度等)4.(2024·全国·模拟预测)如图,在长方体中,,,M,N分别为BC,的中点,点P在矩形内运动(包括边界),若平面AMN,则取最小值时,三棱锥的体积为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.(2024·全国·模拟预测)如图,该“四角反棱柱”是由两个相互平行且全等的正方形经过旋转、连接而成,其侧面均为等边三角形,则该“四角反棱柱”外接球的表面积与侧面面积的比为.6.(2024·全国·模拟预测)已知圆锥的母线,侧面积为,则圆锥的内切球半径为;若正四面体能在圆锥内任...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
1994年山东高考文科数学真题及答案.doc
1994年山东高考文科数学真题及答案.doc
免费
6下载
2015年高考数学试卷(文)(四川)(空白卷).pdf
2015年高考数学试卷(文)(四川)(空白卷).pdf
免费
0下载
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
免费
0下载
2024届高考数学考向核心卷—新课标版 答题卡.pdf
2024届高考数学考向核心卷—新课标版 答题卡.pdf
免费
2下载
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
免费
0下载
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
免费
0下载
2012年高考数学试卷(理)(北京)(空白卷).doc
2012年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
免费
0下载
专题04 导数及其应用(解答题)(文科)(原卷版).docx
专题04 导数及其应用(解答题)(文科)(原卷版).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
免费
10下载
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
免费
0下载
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
免费
0下载
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
免费
0下载
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群