2024年新高考数学复习资料第29讲 等比数列(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共84页】

2024年新高考数学复习资料第29讲 等比数列(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第29讲 等比数列(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第29讲 等比数列(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第29讲等比数列(精讲)题型目录一览①等比数列基本量的计算②等比数列的性质及其应用③等比数列的前n项和④等比数列中中an与a+bi=c+di⇔a=b,c且=d的关系⑤等比数列的函数特性⑥等比数列的判定与证明一、等比数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母表示,定义的表达式为.2.等比中项:如果,,成等比数列,那么叫做与的等比中项.即是与的等比中项⇔,,成等比数列⇒.二、等比数列的有关公式1.等比数列的通项公式设等比数列的首项为,公比为,则它的通项公式.推广形式:2.等比数列的前n项和公式等比数列的公比为,其前项和为注:①在求等比数列的前项和时,首先要判断公比是否为1,再由的情况选择相应的求和公式,当不一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com能判断公比是否为1时,要分与两种情况讨论求解.②,为关于的指数型函数,且系数与常数互为相反数.三、等比数列的性质1.等比中项的推广.若时,则,特别地,当时,.(2)①设为等比数列,则(为非零常数),,仍为等比数列.②设与为等比数列,则也为等比数列.2.等比数列的单调性(等比数列的单调性由首项与公比决定).当或时,为递增数列;当或时,为递减数列.3.其他衍生等比数列.若已知等比数列,公比为,前项和为,则:①等间距抽取为等比数列,公比为.②等长度截取为等比数列,公比为(当时,不为偶数).【常用结论】1.若,则.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.若,(项数相同)是等比数列,则,,,,仍是等比数列.3.在等比数列中,等距离取出若干项也构成一个等比数列,即为等比数列,公比为.4.公比不为-1的等比数列的前项和为,则,,仍成等比数列,其公比为.题型一等比数列基本量的计算题型一等比数列基本量的计算策略方法等比数列基本量运算的解题策略等比列的通公式前数项与n和公式共涉及五量项个a1,an,q,n,Sn,已知其中三就能求另个外两个(简称“知三求二”).【典例1】(单选题)已知各项均为正数的等比数列中,,,则该数列的公比为()A.2B.1C.D.【答案】C【分析】由等比数列的定义和性质知,结合可得.【详解】设数列公比为,因数列各项均为正数,故,则,得解得或(负值舍去).二、题型分类精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:C.【题型训练】一、单选题1.(2023春·贵州黔东南·高三校考阶段练习)已知等比数列满足,,则()A.B.C.D.【答案】B【分析】求出公比,再根据等比数列的通项即可得解.【详解】设公比为,因为,所以,所以,所以.故选:B.2.(2023·广东珠海·珠海市第一中学校考模拟预测)已知等比数列的各项均为正数,公比,且,则()A.B.C.D.【答案】B【分析】根据题意列出方程求得,结合等比数列的通项公式,即可求解.【详解】由,可得,解得,又由,所以,所以.故选:B.3.(2023·四川成都·成都七中校考模拟预测)设是等比数列,且,,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com()A.8B.-8C.4D.-4【答案】B【分析】根据条件,求首项和公比,再代入等比数列的通项公式,即可求解.【详解】设等比数列的公比为,则,解得:,,所以.故选:B4.(2023春·北京·高三汇文中学校考阶段练习)在等比数列中,,,则等于()A.9B.72C.9或70D.9或【答案】D【分析】利用等比数列的性质求出公比,即可求出的值.【详解】由题意,,在等比数列中,,,设公比为,,即,解得或,∴,当时,,当时,.故选:D.5.(2023·福建福州·福建省福州第一中学校考三模)英国数学家亚历山大·艾利斯提出用音分来精确度量小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com音程,音分...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
【免费下载】湖南2016年高考数学真题(理科)(新课标Ⅰ)(原卷版).doc
【免费下载】湖南2016年高考数学真题(理科)(新课标Ⅰ)(原卷版).doc
免费
0下载
2025年新高考数学复习资料第08讲 函数模型及其应用(五大题型)(练习)(原卷版).docx
2025年新高考数学复习资料第08讲 函数模型及其应用(五大题型)(练习)(原卷版).docx
免费
0下载
2024年新高考数学复习资料专题8.4 椭圆(解析版).docx
2024年新高考数学复习资料专题8.4 椭圆(解析版).docx
免费
0下载
2024年新高考数学复习资料大题03 立体几何(7大题型)(原卷版).docx
2024年新高考数学复习资料大题03 立体几何(7大题型)(原卷版).docx
免费
0下载
2025年新高考数学复习资料重难点突破08 利用导数解决一类整数问题(四大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破08 利用导数解决一类整数问题(四大题型)(原卷版).docx
免费
0下载
高考数学解题技巧归纳专题01 函数相关技巧(新高考地区专用)(解析版).docx
高考数学解题技巧归纳专题01 函数相关技巧(新高考地区专用)(解析版).docx
免费
1下载
2024年新高考数学复习资料素养拓展07 导数中利用构造函数解不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展07 导数中利用构造函数解不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
专题41平面解析几何第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题41平面解析几何第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
17下载
2014年天津市高考数学试卷(理科)往年高考真题.doc
2014年天津市高考数学试卷(理科)往年高考真题.doc
免费
0下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 26.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 26.docx
免费
4下载
2012年高考数学试卷(理)(湖北)(空白卷).pdf
2012年高考数学试卷(理)(湖北)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题14 函数的图象(二)(含2021-2023高考真题)(原卷版).docx
2024年新高考数学复习资料专题14 函数的图象(二)(含2021-2023高考真题)(原卷版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练19.docx
高中2024版考评特训卷·数学【新教材】考点练19.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练39.docx
高中2022·微专题·小练习·数学·理科【统考版】专练39.docx
免费
0下载
2022·微专题·小练习·数学【新高考】专练47.docx
2022·微专题·小练习·数学【新高考】专练47.docx
免费
8下载
2013年高考数学试卷(文)(重庆)(空白卷) (1).docx
2013年高考数学试卷(文)(重庆)(空白卷) (1).docx
免费
0下载
2018年全国统一高考数学试卷(文科)(新课标ⅱ)+往年高考真题.doc
2018年全国统一高考数学试卷(文科)(新课标ⅱ)+往年高考真题.doc
免费
0下载
2010年高考数学真题(文科)(新课标)(解析版).doc
2010年高考数学真题(文科)(新课标)(解析版).doc
免费
8下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练14.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练14.docx
免费
3下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十八) 数列求和(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十八) 数列求和(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群