2024年新高考数学复习资料第31练 基本立体几何图形及几何体的表面积与体积(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共97页】

2024年新高考数学复习资料第31练 基本立体几何图形及几何体的表面积与体积(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第31练 基本立体几何图形及几何体的表面积与体积(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第31练 基本立体几何图形及几何体的表面积与体积(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第31讲基本立体几何图形及几何体的表面积与体积(精练)一、单选题1.(2023·全国·统考高考真题)在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.3【答案】A【分析】证明平面,分割三棱锥为共底面两个小三棱锥,其高之和为AB得解.【详解】取中点,连接,如图,是边长为2的等边三角形,,,又平面,,平面,又,,故,即,所以,故选:A2.(2023·全国·统考高考真题)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,刷真题明导向小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,若的面积等于,则该圆锥的体积为()A.B.C.D.【答案】B【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在中,,而,取中点,连接,有,如图,,,由的面积为,得,解得,于是,所以圆锥的体积.故选:B3.(2023·天津·统考高考真题)在三棱锥中,线段上的点满足,线段上的点满足,则三棱锥和三棱锥的体积之比为()A.B.C.D.【答案】B小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】分别过作,垂足分别为.过作平面,垂足为,连接,过作,垂足为.先证平面,则可得到,再证.由三角形相似得到,,再由即可求出体积比.【详解】如图,分别过作,垂足分别为.过作平面,垂足为,连接,过作,垂足为.因为平面,平面,所以平面平面.又因为平面平面,,平面,所以平面,且.在中,因为,所以,所以,在中,因为,所以,所以.故选:B小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为,腰为3的等腰三角形,则该几何体的体积为()A.23B.24C.26D.27【答案】D【分析】作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.【详解】该几何体由直三棱柱及直三棱柱组成,作于M,如图,因为,所以,因为重叠后的底面为正方形,所以,在直棱柱中,平面BHC,则,由可得平面,设重叠后的EG与交点为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则则该几何体的体积为.故选:D.5.(2022·全国·统考高考真题)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则()A.B.C.D.【答案】C【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,则,所以,又,则,所以,所以甲圆锥的高,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com乙圆锥的高,所以.故选:C.6.(2022·北京·统考高考真题)已知正三棱锥的六条棱长均为6,S是及其内部的点构成的集合.设集合,则T表示的区域的面积为()A.B.C.D.【答案】B【分析】求出以为球心,5为半径的球与底面的截面圆的半径后可求区域的面积.【详解】设顶点在底面上的投影为,连接,则为三角形的中心,且,故.因为,故,故的轨迹为以为圆心,1为半径的圆,而三角形内切圆的圆心为,半径为,故的轨迹圆在三角形内部,故其面积为故选:B小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com7.(2021·天津·统考高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为,则这两个圆锥的体积之和为()A.B.C.D.【答案】B【分析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.【详解】如下图所示,设两个圆锥的底面圆圆心为点,设圆锥和圆锥...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料