2024年新高考数学复习资料素养拓展1 柯西不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx本文件免费下载 【共7页】

2024年新高考数学复习资料素养拓展1 柯西不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展1 柯西不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展1 柯西不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展01柯西不等式(精讲+精练)1.二维形式的柯西不等式2.二维形式的柯西不等式的变式3.二维形式的柯西不等式的向量形式注:有条件要用;没有条件,创造条件也要用。比如,对,并不是不等式的形状,但变成就可以用柯西不等式了。4.扩展:,当且仅当时,等号成立.【典例1】实数x、y满足,则x+y的最大值是________.二、题型精讲精练一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解:,则所以,当且仅当时等号成立.答案:【典例2】(2019·全国高考真题)设,且.(1)求的最小值;(2)若成立,证明:或.【分析】(1)根据条件,和柯西不等式得到,再讨论是否可以达到等号成立的条件.(2)恒成立问题,柯西不等式等号成立时构造的代入原不等式,便可得到参数的取值范围.【详解】(1)故等号成立当且仅当而又因,解得时等号成立,所以的最小值为.(2)因为,所以.根据柯西不等式等号成立条件,当,即时有小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com成立.所以成立,所以有或.【题型训练1-刷真题】一、填空题1.(2021·浙江·统考高考真题)已知平面向量满足.记向量在方向上的投影分别为x,y,在方向上的投影为z,则的最小值为___________.二、解答题2.(2022·全国·统考高考真题)已知a,b,c均为正数,且,证明:(1);(2)若,则.【题型训练2-刷模拟】1.(2023·全国·高三专题练习)若实数x、y、z满足(a为常数),求的最小值.2.(2023·甘肃兰州·校考一模)已知,且满足,求的最小值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(2023·河南·校联考模拟预测)已知a,b,c是正实数,且.求证:(1);(2).4.(2023·江西吉安·统考一模)已均为正数,且,证明:(1);(2).5.(2023·全国·高三专题练习)已知均为正数,且满足.证明:(1);(2).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.(2023春·江西·高三校联考阶段练习)设为正数,且.(1)证明;(2)证明.7.(2023·四川·四川省金堂中学校校联考三模)已知,且,证明:(1);(2)若,则.二、单选题8.(2023·全国·高三专题练习)“柯西不等式”是由数学家柯西在研究数学分析中的“流数”问题时得到的,但从历史的角度讲,该不等式应当称为柯西﹣﹣布尼亚科夫斯基﹣﹣施瓦茨不等式,因为正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式推广到完善的地步,在高中数学选修教材45﹣中给出了二维形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc(即)时等号成立.该不等式在数学中证明不等式和求函数最值等方面都有广泛的应用.根据柯西不等式可知函数的最大值及取得最大值时x的值分别为()A.B.C.D.9.(2023·浙江·统考一模)若,则的最小值是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.0B.C.D.三、填空题10.(2023秋·河北衡水·高三河北衡水中学校考期末)若⊙C:,⊙D:,M,N分别为⊙C,⊙D上一动点,最小值为4,则取值范围为_________.11.(2023春·江苏苏州·高三统考开学考试)设角、均为锐角,则的范围是______________.12.(2023秋·湖南湘潭·高三校联考期末)已知正实数a,b满足,则的最小值为___________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料