小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展03与大学高等数学接轨的三类函数(精讲+精练)高考数学与高等数学知识(如欧拉公式、高斯函数、狄利克雷函数)的接轨,常以小题的形式呈现,意在考查数学抽象、逻辑推理、直观想象和数学运算等核心素养.因此在复习备考中,有意识地加强这方面的训练是很有必要的,这有利于培养个人的探究、创新精神,拓宽思维,提升核心素养.【题型训练】1.欧拉公式1.(多选题)(2023·全国·高三专题练习)欧拉公式()被数学家们称为“宇宙第一公式”.(其中无理数),如果记小数点后第位上的数字为,则是关于的函数,记为.设此函数定义域()为,值域()为,则关于此函数,下列说法正确的有()A.B.函数的图像是一群孤立的点C.是的函数D.【答案】ABD【分析】根据的定义可知A正确;由可知B正确;根据函数定义可知C错误;根据,可知D正确.【详解】对于A,小数点后第位上的数字为,,A正确;二、题型精讲精练一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于B,,的图像是一群孤立的点,B正确;对于C,由的值可知:当时,,不符合函数的定义,C错误;对于D,由题意知:;又,,D正确.故选:ABD.2.(单选题)(2023·全国·高三专题练习)欧拉公式()被数学家们称为“宇宙第一公式”.(其中无理数),如果记小数点后第位上的数字为,则是关于的函数,记为.设此函数定义域()为,值域()为,则关于此函数,下列说法正确的有()A.B.函数的图像是一群孤立的点C.是的函数D.【答案】A【分析】利用欧拉公式即可判断①,逆用欧拉公式即可判断②【详解】①②则①②均正确故选:A3.(填空题)(2023春·上海浦东新·高三上海市实验学校校考阶段练习)欧拉公式,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的联系,被誉为“数学中的天桥”,已知数小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com列的通项公式为,则数列前2022项的乘积为__.【答案】【分析】根据题意,,然后根据指数运算法则求积,再根据等差数列求和公式化简,最后根据定义求结果.【详解】因为,所以,所以.故答案为:.2.高斯函数一、单选题1.(2023·全国·高三专题练习)世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子”美誉的高斯提出了取整函数,表示不超过的最大整数,例如,.已知,,则函数的值域为()A.B.C.D.【答案】C【分析】根据题意,将其变形分析其取值范围结合取整函数,即可求得结果.【详解】易知,在上单调递减,上单调递增.当时,;当时,;当时,;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,则函数的值域为.故选:C.2.(2023·全国·高三专题练习)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉.函数称为高斯函数,其中,表示不超过x的最大整数,例如:,,则方程的所有解之和为()A.B.C.D.【答案】C【分析】,,使,可得,,分类讨论k为奇数和偶数的情况,求出k的值,再代入求解即可.【详解】解:,,使,则,可得,,若k为奇数,则,所以,,则,解得,或,当时,,,,,当时,,,,,若k为偶数,则,所以,,则,解得,或,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,,,,当时,,,,,因此,所有解之和为:,故选:C.【点睛】结论点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.3.(2023春·宁夏银川·高三银川一中校考期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家....