2024年新高考数学复习资料素养拓展4 指数、对数、幂值的比较大小(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共29页】

2024年新高考数学复习资料素养拓展4 指数、对数、幂值的比较大小(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展4 指数、对数、幂值的比较大小(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展4 指数、对数、幂值的比较大小(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展04指数、对数、幂值比较大小(精讲+精练)一、常规思路1.①底数相同,指数不同时,如和,利用指数函数的单调性;②指数相同,底数不同,如和利用幂函数单调性比较大小;③底数相同,真数不同,如和利用指数函数单调性比较大小;注:除了指对幂函数,其他函数(比如三角函数,对勾函数等)也都可以利用单调性比较大小。2.底数、指数、真数、三角函数名都不同,寻找中间变量0,1或者其它能判断大小关系的中间量,借助“媒介数”进行大小关系的判定.3.通过做差与0的比较来判断两数的大小;通过做商与1的比较来判断两数的大小。二、同构构造函数或者利用作差或作商法构造函数1.同构是构造函数的一种常用方法.常利用x=ln⁡ex(x∈R),x=eln⁡x(x>0)将要比较的三个数化为结构相同的式子,再将其看作同一个函数的三个值,用常值换元构造函数,利用函数的单调性比较大小.2.对于同时含有指数、对数结构的两个变量的等式,或者含两个变量,且结构相似的等式,比较相关的两个变量间的大小问题时,思考的逻辑路径为先分离变量,再将等式通过合理变形,放缩成结构相同的不等式,然后利用同构函数思想,转化为比较某个函数的两个函数值f(g(x))与f(ℎ(x))的大小,最后利用函数f(x)的单调性,转化为比较自变量g(x)与ℎ(x)的大小,实现将超越函数普通化的目的,达到事半功倍的效果。常见指数、对数的同构函数有:(1)y=xex与y=xln⁡x;(2)y=exx与y=xln⁡x;(3)y=x+ex与y=ln⁡x+x;(4)y=ex−x与y=x−ln⁡x。3.作差法、作商法是构造函数的一种最常用的方法.解题的关键是作差(或作商)后将得到式子中相同部分看作变量x,由常值换元法构造函数,利用函数的单调性比较大小.比较两个代数式的大小时,若在适当变形的基础上,能够发现这两个代数式均涉及某个特殊的“数字”,则可将该数字利用变量“x”加以表示,从而可考虑一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com通过作差(或作商)方式,灵活构造函数,并利用函数的单调性,巧妙比较大小.三、放缩法1.ln⁡x⩽x−1(x>0);ln⁡x⩾1−1x(x>0)2.ex⩾x+1(x∈R);ex>x>ln⁡x(x>0);(1−x)ex⩽1(x∈R)3.sin⁡x<x<tan⁡x(0<x<π2)【典例1】设,,,则a,b,c的大小关系为().A.B.C.D.【答案】A【分析】根据换底公式可得,由对数函数的性质可得,从而可比较大小.【详解】,因为在上单调递增,所以,所以,即.又,所以.故选:A.【典例2】已知,,,则()二、题型精讲精练小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案】C【分析】先对等式变形得到,,,构造,求导得到其单调性,结合,,得到,,由推出,结合函数单调性求出,从而比较出大小.【详解】由,同理,,令,,当时,,当时,,可得函数的递减区间为,递增区间为,而2<e<3<4,又由,,可得,,,又由及的单调性,可知,故.故选:C.【点睛】关键点点睛:构造函数比较大小是高考热点和难点,结合代数式的特点,选择适当的函数,通过导函数研究出函数的单调性,从而比较出代数式的大小,本题中,变形得到,,,从而构造,达到比较大小的目的.【典例3】已知,,,则()A.B.C.D.【答案】A小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】化简得,构造函数,通过导数可证得,可得,而,从而可得答案.【详解】.设,则有,单调递减,从而,所以,故,即,而,故有.故选:A.【题型训练1-刷真题】一、单选题1.(2022·全国·统考高考真题)设,则()A.B.C.D.【答案】C【分析】构造函数,导数判断其单调性,由此确定的大小.【详解】方法一:构造法设,因为,当时,,当时,所以函数在单调递减,在上单调递增,所以,所以,故,即,所以,所以,故,所以,故,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设,则,令,,当时,,函数单调递减,当时,,函数单调递增,又,所以当时,,所以当时,,函数单调递...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料押上海高考17题(三角函数、立体几何)原卷版.docx
2024年新高考数学复习资料押上海高考17题(三角函数、立体几何)原卷版.docx
免费
0下载
2023《微专题·小练习》·数学·新教材·XL-3专练 15.docx
2023《微专题·小练习》·数学·新教材·XL-3专练 15.docx
免费
5下载
专题3-函数应用题-沪教版高三数学2021-2022一模考试汇编.docx
专题3-函数应用题-沪教版高三数学2021-2022一模考试汇编.docx
免费
0下载
2024版《微专题》·数学·新高考专练 7.docx
2024版《微专题》·数学·新高考专练 7.docx
免费
17下载
专题19三角函数与解三角形第六缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题19三角函数与解三角形第六缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
11下载
2003年河南高考理科数学真题及答案.doc
2003年河南高考理科数学真题及答案.doc
免费
17下载
2023年高考数学试卷(文)(全国甲卷)(空白卷) (2).docx
2023年高考数学试卷(文)(全国甲卷)(空白卷) (2).docx
免费
0下载
2017年上海市松江区高考数学二模试卷.doc
2017年上海市松江区高考数学二模试卷.doc
免费
0下载
2022·微专题·小练习·数学【新高考】专练45.docx
2022·微专题·小练习·数学【新高考】专练45.docx
免费
20下载
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (2).docx
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (2).docx
免费
0下载
2012年高考数学试卷(理)(陕西)(解析卷).pdf
2012年高考数学试卷(理)(陕西)(解析卷).pdf
免费
0下载
高中2023《微专题·小练习》·数学·新教材·XL-3专练 27.docx
高中2023《微专题·小练习》·数学·新教材·XL-3专练 27.docx
免费
0下载
1994年广东高考理科数学真题及答案.doc
1994年广东高考理科数学真题及答案.doc
免费
20下载
2024年新高考数学复习资料押北京卷 第16题 三角函数与解三角形解答题 (解析版).docx
2024年新高考数学复习资料押北京卷 第16题 三角函数与解三角形解答题 (解析版).docx
免费
0下载
2024年新高考数学复习资料抢分专练02 立体几何(解析版).docx
2024年新高考数学复习资料抢分专练02 立体几何(解析版).docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第9章 §9.4 列联表与独立性检验.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第9章 §9.4 列联表与独立性检验.docx
免费
0下载
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (6).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (6).pdf
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练23.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练23.docx
免费
11下载
2017年高考数学试卷(文)(新课标Ⅲ)(解析卷) (1).pdf
2017年高考数学试卷(文)(新课标Ⅲ)(解析卷) (1).pdf
免费
0下载
2024年新高考数学复习资料专题2.1 函数的解析式与定义域、值域【八大题型】(举一反三)(新高考专用)(原卷版).docx
2024年新高考数学复习资料专题2.1 函数的解析式与定义域、值域【八大题型】(举一反三)(新高考专用)(原卷版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群