2024年新高考数学复习资料专题03 导数及其应用-2022年高考真题和模拟题数学分专题训练(教师版含解析).docx本文件免费下载 【共49页】

2024年新高考数学复习资料专题03 导数及其应用-2022年高考真题和模拟题数学分专题训练(教师版含解析).docx
2024年新高考数学复习资料专题03 导数及其应用-2022年高考真题和模拟题数学分专题训练(教师版含解析).docx
2024年新高考数学复习资料专题03 导数及其应用-2022年高考真题和模拟题数学分专题训练(教师版含解析).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题03导数及其应用1.【2022年全国甲卷】当x=1时,函数f(x)=alnx+bx取得最大值−2,则f&#039;(2)=¿()A.−1B.−12C.12D.1【答案】B【解析】【分析】根据题意可知f(1)=−2,f&#039;(1)=0即可解得a,b,再根据f&#039;(x)即可解出.【详解】因为函数f(x)定义域为(0,+∞),所以依题可知,f(1)=−2,f&#039;(1)=0,而f&#039;(x)=ax−bx2,所以b=−2,a−b=0,即a=−2,b=−2,所以f&#039;(x)=−2x+2x2,因此函数f(x)在(0,1)上递增,在(1,+∞)上递减,x=1时取最大值,满足题意,即有f&#039;(2)=−1+12=−12.故选:B.2.【2022年全国甲卷】已知a=3132,b=cos14,c=4sin14,则()A.c>b>aB.b>a>cC.a>b>cD.a>c>b【答案】A【解析】【分析】由cb=4tan14结合三角函数的性质可得c>b;构造函数f(x)=cosx+12x2−1,x∈(0,+∞),利用导数可得b>a,即可得解.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】因为cb=4tan14,因为当x∈(0,π2),sinx<x<tanx所以tan14>14,即cb>1,所以c>b;设f(x)=cosx+12x2−1,x∈(0,+∞),f&#039;(x)=−sinx+x>0,所以f(x)在(0,+∞)单调递增,则f(14)>f(0)=0,所以cos14−3132>0,所以b>a,所以c>b>a,故选:A3.【2022年新高考1卷】设a=0.1e0.1,b=19,c=−ln0.9,则()A.a<b<cB.c<b<aC.c<a<bD.a<c<b【答案】C【解析】【分析】构造函数f(x)=ln(1+x)−x,导数判断其单调性,由此确定a,b,c的大小.【详解】设f(x)=ln(1+x)−x(x>−1),因为f&#039;(x)=11+x−1=−x1+x,当x∈(−1,0)时,f&#039;(x)>0,当x∈(0,+∞)时f&#039;(x)<0,所以函数f(x)=ln(1+x)−x在(0,+∞)单调递减,在(−1,0)上单调递增,所以f(19)<f(0)=0,所以ln109−19<0,故19>ln109=−ln0.9,即b>c,所以f(−110)<f(0)=0,所以ln910+110<0,故910<e−110,所以110e110<19,故a<b,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设g(x)=xex+ln(1−x)(0<x<1),则g&#039;(x)=(x+1)ex+1x−1=(x2−1)ex+1x−1,令h(x)=ex(x2−1)+1,h&#039;(x)=ex(x2+2x−1),当0<x<❑√2−1时,h&#039;(x)<0,函数h(x)=ex(x2−1)+1单调递减,当❑√2−1<x<1时,h&#039;(x)>0,函数h(x)=ex(x2−1)+1单调递增,又h(0)=0,所以当0<x<❑√2−1时,h(x)<0,所以当0<x<❑√2−1时,g&#039;(x)>0,函数g(x)=xex+ln(1−x)单调递增,所以g(0.1)>g(0)=0,即0.1e0.1>−ln0.9,所以a>c故选:C.4.【2022年新高考1卷】(多选)已知函数f(x)=x3−x+1,则()A.f(x)有两个极值点B.f(x)有三个零点C.点(0,1)是曲线y=f(x)的对称中心D.直线y=2x是曲线y=f(x)的切线【答案】AC【解析】【分析】利用极值点的定义可判断A,结合f(x)的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.【详解】由题,f&#039;(x)=3x2−1,令f&#039;(x)>0得x>❑√33或x←❑√33,令f&#039;(x)<0得−❑√33<x<❑√33,所以f(x)在(−❑√33,❑√33)上单调递减,在(−∞,−❑√33),(❑√33,+∞)上单调递增,所以x=±❑√33是极值点,故A正确;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com因f(−❑√33)=1+2❑√39>0,f(❑√33)=1−2❑√39>0,f(−2)=−5<0,所以,函数f(x)在(−∞,−❑√33)上有一个零点,当x≥❑√33时,f(x)≥f(❑√33)>0,即函数f(x)在(❑√33,+∞)上无零点,综上所述,函数f(x)有一个零点,故B错误;令h(x)=x3−x,该函数的定义域为R,h(−x)=(−x)3−(−x)=−x3+x=−h(x),则h(x)是奇函数,(0,0)是h(x)的对称中心,将h(x)的图象向上移动一个单位得到f(x)的图象,所以点(0,1)是曲线y=f(x)的对称中心,故C正确;令f&#039;(x)=3x2−1=2,可得x=±1,又f(1)=f(−1)=1,当切点为(1,1)时,切线方程为y=2x−1,当切点为(−1,1)时,切线方程为y=2x+3,故D错误.故选:AC.5.【2022年全国乙卷】已知x=x1和x=x2分别是函数f(x)=2ax−ex2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是____________.【答案】(1e,1)【解析】【分析】由x1,x2分别是函数f(x)=2ax−ex2的极小值点和极大值点,可得x∈(−∞,x1)∪(x2,+∞)时,f&#039;(x)<0,x∈(x1,x2)时,f&#039;(x)>0,再分a>1和0<a<1两...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版).doc
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版).doc
免费
3下载
广东省茂名市信宜市2021-2022学年高一上学期期末数学试题 (1).pdf
广东省茂名市信宜市2021-2022学年高一上学期期末数学试题 (1).pdf
免费
6下载
2024年新高考数学复习资料重难点突破01  平面向量中最值、范围问题(解析版).docx
2024年新高考数学复习资料重难点突破01 平面向量中最值、范围问题(解析版).docx
免费
0下载
2024年新高考数学复习资料第32练 空间点、直线、平面间的位置关系(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第32练 空间点、直线、平面间的位置关系(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练109.docx
高中2024版考评特训卷·数学【新教材】考点练109.docx
免费
0下载
2017年高考数学试卷(理)(北京)(空白卷).pdf
2017年高考数学试卷(理)(北京)(空白卷).pdf
免费
0下载
高考数学复习  模拟预测卷01(新课标卷)(原卷版).docx
高考数学复习 模拟预测卷01(新课标卷)(原卷版).docx
免费
0下载
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
免费
0下载
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (五).doc
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (五).doc
免费
13下载
2022·微专题·小练习·数学·理科【统考版】专练37 .docx
2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
17下载
高中2024版《微专题》·数学(文)·统考版专练 22.docx
高中2024版《微专题》·数学(文)·统考版专练 22.docx
免费
0下载
2025年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
2025年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2019年高考数学试卷(浙江)(解析卷).doc
2019年高考数学试卷(浙江)(解析卷).doc
免费
0下载
2016年湖南高考理科数学试题及答案.docx
2016年湖南高考理科数学试题及答案.docx
免费
4下载
2009年高考数学试卷(理)(山东)(解析卷).doc
2009年高考数学试卷(理)(山东)(解析卷).doc
免费
0下载
2008年高考数学试卷(理)(全国卷Ⅰ)(空白卷) (1).pdf
2008年高考数学试卷(理)(全国卷Ⅰ)(空白卷) (1).pdf
免费
0下载
2017年江苏省高考数学试卷.doc
2017年江苏省高考数学试卷.doc
免费
0下载
2025年新高考数学复习资料重难点突破02 向量中的隐圆问题(五大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破02 向量中的隐圆问题(五大题型)(原卷版).docx
免费
0下载
2021年全国高考甲卷数学(理)试题(解析版).doc
2021年全国高考甲卷数学(理)试题(解析版).doc
免费
28下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料