2024年新高考数学复习资料专题03 导数及其应用-2022年高考真题和模拟题数学分专题训练(教师版含解析).docx本文件免费下载 【共49页】

2024年新高考数学复习资料专题03 导数及其应用-2022年高考真题和模拟题数学分专题训练(教师版含解析).docx
2024年新高考数学复习资料专题03 导数及其应用-2022年高考真题和模拟题数学分专题训练(教师版含解析).docx
2024年新高考数学复习资料专题03 导数及其应用-2022年高考真题和模拟题数学分专题训练(教师版含解析).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题03导数及其应用1.【2022年全国甲卷】当x=1时,函数f(x)=alnx+bx取得最大值−2,则f&#039;(2)=¿()A.−1B.−12C.12D.1【答案】B【解析】【分析】根据题意可知f(1)=−2,f&#039;(1)=0即可解得a,b,再根据f&#039;(x)即可解出.【详解】因为函数f(x)定义域为(0,+∞),所以依题可知,f(1)=−2,f&#039;(1)=0,而f&#039;(x)=ax−bx2,所以b=−2,a−b=0,即a=−2,b=−2,所以f&#039;(x)=−2x+2x2,因此函数f(x)在(0,1)上递增,在(1,+∞)上递减,x=1时取最大值,满足题意,即有f&#039;(2)=−1+12=−12.故选:B.2.【2022年全国甲卷】已知a=3132,b=cos14,c=4sin14,则()A.c>b>aB.b>a>cC.a>b>cD.a>c>b【答案】A【解析】【分析】由cb=4tan14结合三角函数的性质可得c>b;构造函数f(x)=cosx+12x2−1,x∈(0,+∞),利用导数可得b>a,即可得解.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】因为cb=4tan14,因为当x∈(0,π2),sinx<x<tanx所以tan14>14,即cb>1,所以c>b;设f(x)=cosx+12x2−1,x∈(0,+∞),f&#039;(x)=−sinx+x>0,所以f(x)在(0,+∞)单调递增,则f(14)>f(0)=0,所以cos14−3132>0,所以b>a,所以c>b>a,故选:A3.【2022年新高考1卷】设a=0.1e0.1,b=19,c=−ln0.9,则()A.a<b<cB.c<b<aC.c<a<bD.a<c<b【答案】C【解析】【分析】构造函数f(x)=ln(1+x)−x,导数判断其单调性,由此确定a,b,c的大小.【详解】设f(x)=ln(1+x)−x(x>−1),因为f&#039;(x)=11+x−1=−x1+x,当x∈(−1,0)时,f&#039;(x)>0,当x∈(0,+∞)时f&#039;(x)<0,所以函数f(x)=ln(1+x)−x在(0,+∞)单调递减,在(−1,0)上单调递增,所以f(19)<f(0)=0,所以ln109−19<0,故19>ln109=−ln0.9,即b>c,所以f(−110)<f(0)=0,所以ln910+110<0,故910<e−110,所以110e110<19,故a<b,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设g(x)=xex+ln(1−x)(0<x<1),则g&#039;(x)=(x+1)ex+1x−1=(x2−1)ex+1x−1,令h(x)=ex(x2−1)+1,h&#039;(x)=ex(x2+2x−1),当0<x<❑√2−1时,h&#039;(x)<0,函数h(x)=ex(x2−1)+1单调递减,当❑√2−1<x<1时,h&#039;(x)>0,函数h(x)=ex(x2−1)+1单调递增,又h(0)=0,所以当0<x<❑√2−1时,h(x)<0,所以当0<x<❑√2−1时,g&#039;(x)>0,函数g(x)=xex+ln(1−x)单调递增,所以g(0.1)>g(0)=0,即0.1e0.1>−ln0.9,所以a>c故选:C.4.【2022年新高考1卷】(多选)已知函数f(x)=x3−x+1,则()A.f(x)有两个极值点B.f(x)有三个零点C.点(0,1)是曲线y=f(x)的对称中心D.直线y=2x是曲线y=f(x)的切线【答案】AC【解析】【分析】利用极值点的定义可判断A,结合f(x)的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.【详解】由题,f&#039;(x)=3x2−1,令f&#039;(x)>0得x>❑√33或x←❑√33,令f&#039;(x)<0得−❑√33<x<❑√33,所以f(x)在(−❑√33,❑√33)上单调递减,在(−∞,−❑√33),(❑√33,+∞)上单调递增,所以x=±❑√33是极值点,故A正确;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com因f(−❑√33)=1+2❑√39>0,f(❑√33)=1−2❑√39>0,f(−2)=−5<0,所以,函数f(x)在(−∞,−❑√33)上有一个零点,当x≥❑√33时,f(x)≥f(❑√33)>0,即函数f(x)在(❑√33,+∞)上无零点,综上所述,函数f(x)有一个零点,故B错误;令h(x)=x3−x,该函数的定义域为R,h(−x)=(−x)3−(−x)=−x3+x=−h(x),则h(x)是奇函数,(0,0)是h(x)的对称中心,将h(x)的图象向上移动一个单位得到f(x)的图象,所以点(0,1)是曲线y=f(x)的对称中心,故C正确;令f&#039;(x)=3x2−1=2,可得x=±1,又f(1)=f(−1)=1,当切点为(1,1)时,切线方程为y=2x−1,当切点为(−1,1)时,切线方程为y=2x+3,故D错误.故选:AC.5.【2022年全国乙卷】已知x=x1和x=x2分别是函数f(x)=2ax−ex2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是____________.【答案】(1e,1)【解析】【分析】由x1,x2分别是函数f(x)=2ax−ex2的极小值点和极大值点,可得x∈(−∞,x1)∪(x2,+∞)时,f&#039;(x)<0,x∈(x1,x2)时,f&#039;(x)>0,再分a>1和0<a<1两...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
【免费下载】湖南2016年高考数学真题(理科)(新课标Ⅰ)(原卷版).doc
【免费下载】湖南2016年高考数学真题(理科)(新课标Ⅰ)(原卷版).doc
免费
0下载
2025年新高考数学复习资料第08讲 函数模型及其应用(五大题型)(练习)(原卷版).docx
2025年新高考数学复习资料第08讲 函数模型及其应用(五大题型)(练习)(原卷版).docx
免费
0下载
2024年新高考数学复习资料专题8.4 椭圆(解析版).docx
2024年新高考数学复习资料专题8.4 椭圆(解析版).docx
免费
0下载
2024年新高考数学复习资料大题03 立体几何(7大题型)(原卷版).docx
2024年新高考数学复习资料大题03 立体几何(7大题型)(原卷版).docx
免费
0下载
2025年新高考数学复习资料重难点突破08 利用导数解决一类整数问题(四大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破08 利用导数解决一类整数问题(四大题型)(原卷版).docx
免费
0下载
高考数学解题技巧归纳专题01 函数相关技巧(新高考地区专用)(解析版).docx
高考数学解题技巧归纳专题01 函数相关技巧(新高考地区专用)(解析版).docx
免费
1下载
2024年新高考数学复习资料素养拓展07 导数中利用构造函数解不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展07 导数中利用构造函数解不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
专题41平面解析几何第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题41平面解析几何第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
17下载
2014年天津市高考数学试卷(理科)往年高考真题.doc
2014年天津市高考数学试卷(理科)往年高考真题.doc
免费
0下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 26.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 26.docx
免费
4下载
2012年高考数学试卷(理)(湖北)(空白卷).pdf
2012年高考数学试卷(理)(湖北)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题14 函数的图象(二)(含2021-2023高考真题)(原卷版).docx
2024年新高考数学复习资料专题14 函数的图象(二)(含2021-2023高考真题)(原卷版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练19.docx
高中2024版考评特训卷·数学【新教材】考点练19.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练39.docx
高中2022·微专题·小练习·数学·理科【统考版】专练39.docx
免费
0下载
2022·微专题·小练习·数学【新高考】专练47.docx
2022·微专题·小练习·数学【新高考】专练47.docx
免费
8下载
2013年高考数学试卷(文)(重庆)(空白卷) (1).docx
2013年高考数学试卷(文)(重庆)(空白卷) (1).docx
免费
0下载
2018年全国统一高考数学试卷(文科)(新课标ⅱ)+往年高考真题.doc
2018年全国统一高考数学试卷(文科)(新课标ⅱ)+往年高考真题.doc
免费
0下载
2010年高考数学真题(文科)(新课标)(解析版).doc
2010年高考数学真题(文科)(新课标)(解析版).doc
免费
8下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练14.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练14.docx
免费
3下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十八) 数列求和(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十八) 数列求和(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群