小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com南京市玄武区2022届高三年级适应性考试(三)一.单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列四个说法,其中正确的是A.命题“若,则”的否命题是“若,则”B.“”是“双曲线的离心率大于”的充要条件C.命题“,”的否定是“,”D.命题“在中,若,则是锐角三角形”的逆否命题是假命题【1题答案】【答案】D【解析】【分析】A选项:否命题应该对条件结论同时否定,说法不正确;B选项:双曲线的离心率大于,解得,所以说法不正确;C选项:否定应该是:,,所以说法不正确;D选项:“在中,若,则是锐角三角形”是假命题,所以其逆否命题也为假命题,所以说法正确.【详解】命题“若,则”的否命题是“若,则”,所以A选项不正确;双曲线的离心率大于,即,解得,则“”是小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com“双曲线的离心率大于”的充分不必要条件,所以B选项不正确;命题“,”的否定是“,”,所以C选项不正确;命题“在中,若,则是锐角三角形”,在中,若,可能,此时三角形不是锐角三角形,所以这是一个假命题,所以其逆否命题也是假命题,所以该选项说法正确.故选:D【点睛】此题考查四个命题关系,充分条件与必要条件,含有一个量词的命题的否定,关键在于弄清逻辑关系,正确求解.2.已知关于的不等式的解集为,则的最大值是()A.B.C.D.【2题答案】【答案】D【解析】【分析】一元二次不等式解集转化为一元二次方程的解,根据韦达定理求出,,再用基本不等式求出最值【详解】的解集为,则是方程的两个根,故,,故因为,所以有基本不等式得:,当且仅当小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即时,等号成立,所以的最大值为故选:D3.某校有高一、高二、高三三个年级,其人数之比为,现用分层抽样的方法从总体中抽取一个容量为10的样本,现从所抽取样本中选两人做问卷调查,至少有一个是高一学生的概率为A.B.C.D.【3题答案】【答案】C【解析】【分析】根据分层抽样的定义计算出抽取的样本中高一学生的人数,分别计算出选两人做问卷调查的基本事件数和所选取的两人中至少有一个是高一学生的基本事件个数,最后利用古典概型公式计算即可.【详解】由题可得抽取的10人中,高一有4人,高二有4人,高三有2人,所以从所抽取样本中选两人做问卷调查,基本事件总数为,所抽取的两人中,至少有一个是高一学生的基本事件个数为,所以从所抽取样本中选两人做问卷调查,至少有一个是高一学生的概率为,故答案选C【点睛】本题考查概率的求法,考查分层抽样,古典概型.排列组合的知识,属于基础题.4.已知等比数列的首项为2,公比为,其前项和记为,若对任意的,均有恒成立,则的最小值为()A.B.C.D.【4题答案】【答案】B【解析】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】Sn•,①n为奇数时,Sn•,根据单调性可得:Sn≤2;②n为偶数时,Sn•,根据单调性可得:≤Sn.可得Sn的最大值与最小值分别为:2,.考虑到函数y=3t在(0,+∞)上单调递增,即可得出.【详解】Sn•,①n为奇数时,Sn•,可知:Sn单调递减,且•,∴Sn≤S1=2;②n为偶数时,Sn•,可知:Sn单调递增,且•,∴S2≤Sn.∴Sn的最大值与最小值分别为:2,.考虑到函数y=3t在(0,+∞)上单调递增,∴A.B.∴B﹣A的最小值.故选B.【点睛】本题考查了等比数列的求和公式及数列单调性的判断和应用问题,考查了恒成立问题的转化,考小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com查了推理能力与计算能力,属于中档题.5.已知函数f(x)满足f(x)=f(3x),当x∈[1,3),f(x)=lnx,若在区间[1,9)内,函数g(x)=f(x)﹣ax有三个不同零点,则实数a的取值范围是()A.B.C.D.【5题答案】【答案】B【解析】【分析】根据题意得到画出函数图像,计算直线与函数相切和过点时的斜率,根据图像得到答案.【详解】函数f(x)满足f...