小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2024届高三第五次大联考试卷数学考生注意:1.本试卷分选择题和非选择题两部分.考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上。选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用、三角函数及解三角形(含三角恒等变换)、平面向量、复数、数列、立体几何(含空间向量)(约),直线与圆、圆锥曲线(约).一、选择题:本题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.【答案】C【解析】【分析】首先解一元二次不等式求出集合,再根据并集的定义计算可得.【详解】由,即,即,解得,所以,又,所以.故选:C小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.已知,,且,则()A.B.2C.D.10【答案】A【解析】【分析】根据复数代数形式的乘法运算及复数相等得到方程组,求出、的值,从而求模.【详解】因为,即,即,因为,,所以,解得,所以.故选:A3.已知直线与直线平行,则的值为()A.4B.C.2或D.或4【答案】B【解析】【分析】根据两直线平行得到,求出的值,再检验即可.【详解】因为直线与直线平行,所以,解得或,当时直线与直线重合,不符合题意;当时直线与直线平行.故选:B小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.在中,点满足,点满足,若,则()A.B.C.D.【答案】C【解析】【分析】用、作为一组基底表示出、,再根据平面向量基本定理得到方程组,解得即可.【详解】因为点满足,所以为的中点,所以,又,所以,所以,又,因为,所以,即,所以,解得,所以.故选:C小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.设,是椭圆C:的两个焦点,点P是C上的一点,且,则的面积为()A.3B.C.9D.【答案】B【解析】【分析】由题设可得,应用余弦定理、椭圆定义求得,最后应用三角形面积公式求面积.【详解】由题设,,可得,,由,,则,即,所以的面积.故选:B小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.若,则()A.B.C.D.【答案】D【解析】【分析】利用诱导公式求出,再由及两角和的正切公式计算可得.【详解】因为,所以,所以,所以,所以.故选:D7.圆锥曲线具有光学性质,如双曲线的光学性质是:从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是发散的,其反向延长线会经过双曲线的另一个焦点,如图,一个镜面的轴截面图是一条双曲线的部分,是它的一条对称轴,是它的一个焦点,一光线从焦点发出,射到镜面上点,反射光线小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com是,若,,则该双曲线的离心率等于()A.B.C.D.【答案】A【解析】【分析】反射光线的反向延长线经过双曲线的另一个焦点,由题中条件可得,,在直角三角形中,,,由双曲线的定义可得,再求出离心率即可.【详解】在平面直角坐标系中,如图,反射光线的反向延长线经过双曲线的另一个焦点,由,,可得,.则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,记双曲线的焦距为,长轴长为,在直角三角形中,,,由双曲线的定义,可得,所以,即,所以离心率.故选:A8.若,,,则a,b,c的大小关系为()A.B.C.D.【答案】A【解析】【分析】由对数函数的性质可得,构造函数,利用导数可得,则答案可求.【详解】因为,所以,所以,令,所以,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,所以,即恒为递增函数,则,即,所以,综上:,故选:A.二、选择题:本题共4小题,在每小题给出的选项中,有多项符合题目要求.9.已知直线经过点,且点,到直线的距离...