专题34探究是否存在直线型问题探索性问题——肯定结论1.存在性问题的解题步骤探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.一般步骤为:(1)假设满足条件的元素(常数、点、直线或曲线)存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组);(2)解此方程(组)或不等式(组);(3)若方程(组)有实数解,则元素(常数、点、直线或曲线)存在,否则不存在.2.解决存在性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.【例题选讲】[例1]已知椭圆C:+=1(a>b>0)的右焦点为F2(2,0),点P在椭圆C上.(1)求椭圆C的标准方程;(2)是否存在斜率为-1的直线l与椭圆C相交于M,N两点,使得|F1M|=|F1N|(F1为椭圆的左焦点)?若存在,求出直线l的方程;若不存在,说明理由.[例2]已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1(-1,0),F2(1,0),点A在椭圆C上.(1)求椭圆C的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C有两个不同交点M,N时,能在直线y=上找到一点P,在椭圆C上找到一点Q,满足PM=NQ?若存在,求出直线的方程;若不存在,说明理由.[例3]已知圆C:(x-1)2+y2=,一动圆与直线x=-相切且与圆C外切.(1)求动圆圆心P的轨迹T的方程;(2)若经过定点Q(6,0)的直线l与曲线T交于A,B两点,M是线段AB的中点,过M作x轴的平行线与曲线T相交于点N,试问是否存在直线l,使得NA⊥NB,若存在,求出直线l的方程;若不存在,请说明理由.[例4]如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),是否存在直线l,使得以PQ为直径的圆恰好过点A,若存在,求出直线l的方程;若不存在,请说明理由.[例5]如图所示,已知椭圆G:+y2=1,与x轴不重合的直线l经过左焦点F1,且与椭圆G相交于A,B两点,弦AB的中点为M,直线OM与椭圆G相交于C,D两点.(1)若直线l的斜率为1,求直线OM的斜率.(2)是否存在直线l,使得|AM|2=|CM||DM|成立?若存在,求出直线l的方程;若不存在,请说明理由.[例6]椭圆+=1的左焦点为F,过点F的直线交椭圆于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.(1)若点G的横坐标为-,求直线AB的斜率;(2)记△GFD的面积为S1,△OED(O为原点)的面积为S2,试问:是否存在直线AB,使得S1=S2?说明理由.[例7]已知平面上动点P到点F的距离与到直线x=的距离之比为,记动点P的轨迹为曲线E.(1)求曲线E的方程;(2)设M是曲线E上的动点,直线l的方程为mx+ny=1.①设直线l与圆x2+y2=1交于不同两点C,D,求|CD|的取值范围;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com②求与动直线l恒相切的定椭圆E′的方程,并探究:若M是曲线Γ:Ax2+By2=1上的动点,是否存在与直线l:mx+ny=1恒相切的定曲线Γ′?若存在,直接写出曲线Γ′的方程;若不存在,说明理由.【对点训练】1.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.2.已知椭圆E:+=1的右焦点为F(c,0)且a>b>c>0,设短轴的一个端点为D,原点O到直线DF的距离为,过原点和x轴不重合的直线与椭圆E相交于C,G两点,且|GF|+|CF|=4.(1)求椭圆E的方程;(2)是否存在过点P(2,1)的直线l与椭圆E相交于不同的两点A,B且使得OP2=4PA·PB成立?若存在,试求出直线l的方程;若不存在,请说明理由.3.如图,由部分抛物线y2=mx+1(m>0,x≥0)和半圆x2+y2=r2(x≤0)所组成的曲线称为“黄金抛物线C”,若“黄金抛物线C”经过点(3,2)和(-,).(1)求“黄金抛物线C”的方程;(...