高中数学高考数学10大专题技巧--专题32 单变量恒成立端点效应非单验悖(教师版).docx本文件免费下载 【共8页】

高中数学高考数学10大专题技巧--专题32 单变量恒成立端点效应非单验悖(教师版).docx
高中数学高考数学10大专题技巧--专题32 单变量恒成立端点效应非单验悖(教师版).docx
高中数学高考数学10大专题技巧--专题32 单变量恒成立端点效应非单验悖(教师版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题32单变量恒成立之端点效应非单验悖考点一单变量恒成立端点效应非单验悖之含端点【例题选讲】[例1]已知函数f(x)=e-x-ax(x∈R).(1)当a=-1时,求函数f(x)的最小值;(2)若x≥0时,f(-x)+ln(x+1)≥1恒成立,求实数a的取值范围.思路(1)先判断f(x)的单调性,再求最小值,(2)端点值等于临界值,令F(x)=f(x-1)-ax+x2=(x-1)ln(x-1)+x2-ax(x≥2),F(2)=0,所以用“端点效应+非单验悖”解决.解析(1)当a=-1时,f(x)=e-x+x,则f′(x)=-+1=.令f′(x)=0,得x=0当x<0时,f′(x)<0;当x>0时,f′(x)>0.所以函数f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.所以当x=0时,函数f(x)取得最小值,且最小值为f(0)=1.(2)因为x≥0时,f(-x)+ln(x+1)≥1恒成立,即ex+ax+ln(x+1)-1≥0.(*)令g(x)=ex+ax+ln(x+1)-1,则又g″(x)=ex-≥0,当且仅当x=0时取等号,所以g′(x)=ex++a在[0,+∞)上单调递增.①若a≥-2,则当且仅当x=0,a=-2时取等号,所以g(x)在[0,+∞)上单调递增,有g(x)≥g(0)=0,(*)式恒成立.②若a<-2,由于g′(0)=2+a<0,x→+∞时,g′(x)→+∞,所以必存在唯一的x0∈(0,+∞),使得g′(x0)=0,当0<x<x0时,g′(x)<0,g(x)单调递减;当x>x0时,g′(x)>0,g(x)单调递增.所以当x∈(0,x0)时,g(x)<g(0)=0,(*)式不恒成立.综上所述,实数a的取值范围是[-2,+∞).悟通考虑端点值,直入问题本质,抓住端点值展开讨论.分析端点值,明确函数图象走势.[例2]已知函数f(x)=ex-x2-ax-1,g(x)=cosx+x2-1.(1)当a=1时,求证:当x≥0时,f(x)≥0;(2)若f(x)+g(x)≥0在[0,+∞)上恒成立,求a的取值范围.解析(1)当a=1时,f(x)=ex-x2-x-1,∴f′(x)=ex-x-1,令u(x)=ex-x-1,则u′(x)=ex-1≥0在[0,+∞)上恒成立,故f′(x)在[0,+∞)上单调递增,∴f′(x)≥f′(0)=0,∴f(x)在[0,+∞)上单调递增,∴f(x)≥f(0)=0,从而原不等式得证.(2) f(x)+g(x)=ex+cosx-ax-2,令h(x)=ex+cosx-ax-2,则h′(x)=ex-sinx-a,令t(x)=ex-sinx-a,则t′(x)=ex-cosx, ex≥1,-1≤cosx≤1,故t′(x)≥0,∴h′(x)在[0,+∞)上单调递增,∴h′(x)≥h′(0)=1-a,①当1-a≥0,即a≤1时,h′(x)≥0,故h(x)在[0,+∞)上单调递增,故h(x)≥h(0)=0,满足题意;②当1-a<0,即a>1时, h′(0)<0,又x→+∞时,h′(x)→+∞,∴∃x0∈(0,+∞),使得h′(x0)=0,∴当x∈(0,x0)时,h′(x)<0,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴h(x)在(0,x0)上单调递减,此时h(x)<h(0)=0,不符合题意.综上所述,实数a的取值范围是(-∞,1].[例3]已知函数f(x)=axln(x+1)+x+1(x>-1,a∈R).(1)若a=,求函数f(x)的单调区间;(2)当x≥0时,f(x)≤ex恒成立,求实数a的取值范围.解析:(1)a=时,f(x)=xln(x+1)+x+1,f′(x)=+1=+1.易得f′(x)在(-1,+∞)上是增函数,且f′=0,∴当x∈时,f′(x)<0,f(x)是减函数;当x∈时,f′(x)>0,f(x)是增函数.∴函数f(x)的单调递减区间是,单调递增区间是.(2)记g(x)=f(x)-ex(x≥0),则g(0)=0,g′(x)=a+1-ex.记h(x)=a+1-ex(x≥0),h′(x)=a-ex,h′(0)=2a-1.①当a≤时, +∈(0,2],ex≥1,∴h′(x)≤0,h(x)在[0,+∞)上是减函数,则h(x)≤h(0)=0,即g′(x)≤0,∴g(x)在[0,+∞)上是减函数,∴g(x)≤g(0)=0恒成立,即f(x)≤ex恒成立,满足题设;②当a>时,h′(x)=a-ex在[0,+∞)上是减函数,又h′(0)=2a-1>0,当x→+∞时,h′(x)→-∞,则必存在x0∈(0,+∞),使h′(x0)=0,则当x∈(0,x0)时,h′(x)>0,h(x)在(0,x0)上是增函数,此时h(x)>h(0)=0,即当x∈(0,x0)时,g′(x)>0,∴g(x)在(0,x0)上是增函数,∴g(x)>g(0)=0,即f(x)>ex,不符合题意.综合①②,得a≤,即实数a的取值范围为.【对点训练】1.(2017·全国Ⅱ)设函数f(x)=(1-x2)ex.(1)讨论f(x)的单调性;(2)当x≥0...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
免费
14下载
高中2022·微专题·小练习·数学【新高考】专练45.docx
高中2022·微专题·小练习·数学【新高考】专练45.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练9.docx
高中2022·微专题·小练习·数学·理科【统考版】专练9.docx
免费
0下载
2009年高考数学试卷(理)(四川)(解析卷).pdf
2009年高考数学试卷(理)(四川)(解析卷).pdf
免费
0下载
上海市普陀区2022年高三第一学期期末(一模)学科质量检测数学试卷(word原卷版).docx
上海市普陀区2022年高三第一学期期末(一模)学科质量检测数学试卷(word原卷版).docx
免费
0下载
2014年上海市浦东新区高考数学一模试卷(文科).doc
2014年上海市浦东新区高考数学一模试卷(文科).doc
免费
0下载
2017年高考数学真题(浙江自主命题).doc
2017年高考数学真题(浙江自主命题).doc
免费
1下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第6讲 椭圆(二)(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第6讲 椭圆(二)(含解析).docx
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点21  概率与统计.docx
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点21  概率与统计.docx
免费
8下载
专题6-数列与极限专题-沪教版高三数学2021-2022一模考试汇编.docx
专题6-数列与极限专题-沪教版高三数学2021-2022一模考试汇编.docx
免费
0下载
2016年上海高考理科数学真题(解析版).docx
2016年上海高考理科数学真题(解析版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练17.docx
高中2024版考评特训卷·数学【新教材】考点练17.docx
免费
0下载
1997年西藏高考文科数学真题及答案.doc
1997年西藏高考文科数学真题及答案.doc
免费
2下载
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word)  课时作业(十三).docx
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word) 课时作业(十三).docx
免费
28下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(三).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(三).docx
免费
0下载
高中2024版《微专题》·数学·新高考专练 15.docx
高中2024版《微专题》·数学·新高考专练 15.docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (9).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (9).pdf
免费
0下载
2007年广东高考文科数学真题及答案.doc
2007年广东高考文科数学真题及答案.doc
免费
29下载
1993年高考数学真题(文科 )(福建自主命题).doc
1993年高考数学真题(文科 )(福建自主命题).doc
免费
15下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群