高中数学高考数学10大专题技巧--专题17 数列不等式的证明(教师版).docx本文件免费下载 【共12页】

高中数学高考数学10大专题技巧--专题17 数列不等式的证明(教师版).docx
高中数学高考数学10大专题技巧--专题17 数列不等式的证明(教师版).docx
高中数学高考数学10大专题技巧--专题17 数列不等式的证明(教师版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题17数列不等式的证明数列不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.常见的放缩类型及方法(1)分式型:①<=;②-<<-;(2)根式型:①2(-)<<2(-);②<<;③>=2(-).(3)分数型:>(b>a>0,m>0),<(a>b>0,m>0);(4)基本不等式型:+>2=2;(5)二项式定理型:2n-1≥2n+1(n≥3).注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.放缩通项公式有可能会进行多次,要注意放缩的方向,朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).考点一先求和(裂项相消法)再放缩【基本题型】[例1]设等差数列{an}的前n项和为Sn,已知a1=9,a2为整数,且Sn≤S5.(1)求{an}的通项公式;(2)设数列的前n项和为Tn,求证:Tn≤.解析(1)由a1=9,a2为整数可知,等差数列{an}的公差d为整数.又Sn≤S5,∴a5≥0,a6≤0,于是9+4d≥0,9+5d≤0,解得-≤d≤-. d为整数,∴d=-2.故{an}的通项公式为an=11-2n.(2)由(1),得==,∴Tn=++…+=.令bn=,由函数f(x)=的图象关于点(4.5,0)对称及其单调性,知0<b1<b2<b3<b4,b5<b6<b7<…<0,∴bn≤b4=1.∴Tn≤×=.[例2]在等比数列{an}中,首项a1=8,数列{bn}满足bn=log2an(n∈N*),且b1+b2+b3=15.(1)求数列{an}的通项公式;(2)记数列{bn}的前n项和为Sn,又设数列的前n项和为Tn,求证:Tn<.解析(1)由bn=log2an和b1+b2+b3=15,得log2(a1a2a3)=15,∴a1a2a3=215,等比列设数{an}的公比为q, a1=8,∴an=8qn-1,∴8·8q·8q2=215,解得q=4,∴an=8·4n-1,即an=22n+1(n∈N*).(2)由(1)得bn=2n+1,易知{bn}等差列,为数小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comSn=3+5+…+(2n+1)=n2+2n,==,则Tn==,∴Tn<.[例3]已知数列{an}为等比数列,数列{bn}为等差数列,且b1=a1=1,b2=a1+a2,a3=2b3-6.(1)求数列{an},{bn}的通项公式;(2)设cn=,数列{cn}的前n项和为Tn,证明:≤Tn<.解析(1)设数列{an}的公比为q,数列{bn}的公差为d,由题意得1+d=1+q,q2=2(1+2d)-6,解得d=q=2,所以an=2n-1,bn=2n-1.(2)因为cn===,所以Tn===-,因为>0,所以Tn<.又因为Tn在[1,+∞)上单调递增,所以当n=1时,Tn取最小值T1=,所以≤Tn<.[例4]已知数列{an}的前n项和为Sn,且满足Sn=(an-1),n∈N*.(1)求数列{an}的通项公式;(2)令bn=log2an,记数列的前n项和为Tn,证明:Tn<.解析(1)当n=1时,有a1=S1=(a1-1),解得a1=4.当n≥2时,有Sn-1=(an-1-1),则an=Sn-Sn-1=(an-1)-(an-1-1),整理得=4,∴数列{an}是以q=4为公比,以a1=4为首项的等比数列.∴an=4×4n-1=4n(n∈N*)即数列{an}的通项公式为an=4n(n∈N*).(2)由(1)得bn=log2an=log24n=2n,则==∴Tn==<.[例5]已知数列{an}中,a1=1,其前n项的和为Sn,且满足an=(n≥2,n∈N*).(1)求证:数列是等差数列;(2)证明:S1+S2+S3+…+Sn<.解析(1)当n≥2时,Sn-Sn-1=,Sn-1-Sn=2Sn·Sn-1,-=2,所以数列是以1为首项,2为公差的等差数列.(2)由(1)可知,=+(n-1)·2=2n-1,所以Sn=.S1+S2+S3+…+Sn=+++…+=×=×<.[例6]设Sn为数列{an}的前n项和,已知a1=2,对任意n∈N*,都有2Sn=(n+1)an.(1)求数列{an}的通项公式;(2)若数列的前n项和为Tn,求证:≤Tn<1.解析(1)因为2Sn=(n+1)an,所以2Sn-1=nan-1(n≥2).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com两式相减,得2an=(n+1)an-nan-1(n≥2),即(n-1)an=nan-1(n≥2),所以当n≥2时,=,所以=.因为a1=2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】1.11.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】1.11.docx
免费
1下载
2024年新高考数学复习资料第20练 三角函数的图像与性质(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第20练 三角函数的图像与性质(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2015年高考数学试卷(理)(天津)(空白卷) (1).docx
2015年高考数学试卷(理)(天津)(空白卷) (1).docx
免费
0下载
2019 年普通高等学校招生全国统一考试 理科数学(全国Ⅱ卷).doc
2019 年普通高等学校招生全国统一考试 理科数学(全国Ⅱ卷).doc
免费
0下载
2024版《微专题》·数学(文)·统考版专练 5.docx
2024版《微专题》·数学(文)·统考版专练 5.docx
免费
23下载
2024年新高考数学复习资料专题1-1 基本不等式归类(原卷版).docx
2024年新高考数学复习资料专题1-1 基本不等式归类(原卷版).docx
免费
0下载
精品解析:江苏省南京市六校2024届高三下学期期初联合调研数学试题(原卷版).docx
精品解析:江苏省南京市六校2024届高三下学期期初联合调研数学试题(原卷版).docx
免费
0下载
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (8).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (8).pdf
免费
0下载
2011年高考数学试卷(理)(大纲版)(空白卷).pdf
2011年高考数学试卷(理)(大纲版)(空白卷).pdf
免费
0下载
二轮专项分层特训卷··高三数学·理科客观题专练 (3).doc
二轮专项分层特训卷··高三数学·理科客观题专练 (3).doc
免费
22下载
2025年新高考数学复习资料2025届新高三阶段性检测03(能力版)(范围:检测范围1、2至等式与不等式、空间向量与立体几何、解析几何)(解析版).docx
2025年新高考数学复习资料2025届新高三阶段性检测03(能力版)(范围:检测范围1、2至等式与不等式、空间向量与立体几何、解析几何)(解析版).docx
免费
0下载
2024年新高考数学复习资料第05讲 一元二次不等式(原卷版).docx
2024年新高考数学复习资料第05讲 一元二次不等式(原卷版).docx
免费
0下载
2015年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
2015年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
免费
0下载
2025年新高考数学复习资料特训08 利用导数解决恒成立问题(三大题型)(原卷版).docx
2025年新高考数学复习资料特训08 利用导数解决恒成立问题(三大题型)(原卷版).docx
免费
0下载
1990年广东高考文科数学真题及答案.doc
1990年广东高考文科数学真题及答案.doc
免费
3下载
2019年高考数学试卷(文)(新课标Ⅱ)(空白卷) (1).pdf
2019年高考数学试卷(文)(新课标Ⅱ)(空白卷) (1).pdf
免费
0下载
2010年高考数学试卷(理)(北京)(空白卷).doc
2010年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
2018年广东高考(理科)数学(原卷版).docx
2018年广东高考(理科)数学(原卷版).docx
免费
26下载
2025年新高考数学复习资料第08讲 函数的奇偶性、对称性和周期性(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
2025年新高考数学复习资料第08讲 函数的奇偶性、对称性和周期性(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
高中数学高考数学10大专题技巧--专题09 含两种曲线模型(教师版).docx
高中数学高考数学10大专题技巧--专题09 含两种曲线模型(教师版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群