高中数学高考数学10大专题技巧--专题17 数列不等式的证明(学生版).docx.doc本文件免费下载 【共12页】

高中数学高考数学10大专题技巧--专题17 数列不等式的证明(学生版).docx.doc
高中数学高考数学10大专题技巧--专题17 数列不等式的证明(学生版).docx.doc
高中数学高考数学10大专题技巧--专题17 数列不等式的证明(学生版).docx.doc
专题17数列不等式的证明数列不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.常见的放缩类型及方法(1)分式型:①<=;②-<<-;(2)根式型:①2(-)<<2(-);②<<;③>=2(-).(3)分数型:>(b>a>0,m>0),<(a>b>0,m>0);(4)基本不等式型:+>2=2;(5)二项式定理型:2n-1≥2n+1(n≥3).注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.放缩通项公式有可能会进行多次,要注意放缩的方向,朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).考点一先求和(裂项相消法)再放缩【基本题型】[例1]设等差数列{an}的前n项和为Sn,已知a1=9,a2为整数,且Sn≤S5.(1)求{an}的通项公式;(2)设数列的前n项和为Tn,求证:Tn≤.[例2]在等比数列{an}中,首项a1=8,数列{bn}满足bn=log2an(n∈N*),且b1+b2+b3=15.(1)求数列{an}的通项公式;(2)记数列{bn}的前n项和为Sn,又设数列的前n项和为Tn,求证:Tn<.[例3]已知数列{an}为等比数列,数列{bn}为等差数列,且b1=a1=1,b2=a1+a2,a3=2b3-6.(1)求数列{an},{bn}的通项公式;(2)设cn=,数列{cn}的前n项和为Tn,证明:≤Tn<.[例4]已知数列{an}的前n项和为Sn,且满足Sn=(an-1),n∈N*.(1)求数列{an}的通项公式;(2)令bn=log2an,记数列的前n项和为Tn,证明:Tn<.[例5]已知数列{an}中,a1=1,其前n项的和为Sn,且满足an=(n≥2,n∈N*).(1)求证:数列是等差数列;(2)证明:S1+S2+S3+…+Sn<.[例6]设Sn为数列{an}的前n项和,已知a1=2,对任意n∈N*,都有2Sn=(n+1)an.(1)求数列{an}的通项公式;(2)若数列的前n项和为Tn,求证:≤Tn<1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com[例7](2020·浙江)已知数列{an},{bn},{cn}满足a1=b1=c1=1,cn=an+1-an,cn+1=cn,n∈N*.(1)若{bn}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{an}的通项公式;(2)若{bn}为等差数列,公差d>0,证明:c1+c2+c3+…+cn<1+,n∈N*.[例8]数列{an}中,a1=,an+1=(n∈N*).(1)求证:an+1<an;(2)记数列{an}的前n项和为Sn,求证:Sn<1.[例9]已知正项数列{an}的前n项和为Sn,且a+2an=4Sn-1.(1)求数列{an}的通项公式;(2)若bn=,数列{bn}的前n项和为Tn,求证:≤Tn<.[例10]设数列{an}的前n项的和Sn=an-×2n+1+(n=1,2,…).(1)求首项a1与通项an;(2)设Tn=(n=1,2,…),证明:i<.[例11]已知数列{an}为单调递增数列,Sn为其前n项和,2Sn=a+n.(1)求{an}的通项公式;(2)若bn=,Tn为数列{bn}的前n项和,证明:Tn<.【对点精练】1.已知等差数列{an}的前n项和为Sn,n∈N*,且a2=3,S5=25.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=,记数列{bn}的前n项和为Tn,证明:Tn<1.2.已知等差数列{an}的公差d≠0,a1=0,其前n项和为Sn,且a2+2,S3,S4成等比数列.(1)求数列{an}的通项公式;(2)若bn=,数列{bn}的前n项和为Tn,求证:Tn-2n<.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.设函数f(x)=+sinx的所有正的极小值点从小到大排成的数列为{xn}.(1)求数列{xn}的通项公式;(2)令bn=,设数列的前n项和为Sn,求证:Sn<.4.数列{an}的前n项和记为Sn,且4Sn=5an-5,数列{bn}满足bn=log5an.(1)求数列{an},{bn}的通项公式;(2)设cn=,数列{cn}的前n项和为Tn,证明Tn<1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.设数列{an}的前n项和为Sn,a1=2,an+1=2+Sn(n∈N*).(1)求数列{an}的通项公式;(2)设bn=1+log2(an)2,求证:数列的前n项和Tn<.6.已知数列{an}的前n项和为Sn,且Sn=+.(1)求数列{an}的通项公式;...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题03 函数的最值(值域)求法(含2021-2023高考真题)(原卷版).docx
2024年新高考数学复习资料专题03 函数的最值(值域)求法(含2021-2023高考真题)(原卷版).docx
免费
0下载
高中数学·必修第一册(北师大版)课时作业WORD  课时作业(十六).doc
高中数学·必修第一册(北师大版)课时作业WORD 课时作业(十六).doc
免费
4下载
2015年山东省高考数学试卷(理科).doc
2015年山东省高考数学试卷(理科).doc
免费
1下载
2008年高考数学试卷(理)(全国卷Ⅱ)(解析卷) (2).pdf
2008年高考数学试卷(理)(全国卷Ⅱ)(解析卷) (2).pdf
免费
0下载
2002年广东高考数学真题及答案.doc
2002年广东高考数学真题及答案.doc
免费
5下载
2025年新高考数学复习资料2025年高考一轮复习第二次月考卷01(原卷版).docx
2025年新高考数学复习资料2025年高考一轮复习第二次月考卷01(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题07 函数的基本性质(八大题型+模拟精练)(原卷版).docx
2025年新高考数学复习资料专题07 函数的基本性质(八大题型+模拟精练)(原卷版).docx
免费
0下载
2016年高考数学试卷(文)(浙江)(空白卷).pdf
2016年高考数学试卷(文)(浙江)(空白卷).pdf
免费
0下载
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (9).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (9).pdf
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练105.docx
高中2024版考评特训卷·数学【新教材】考点练105.docx
免费
0下载
2004年海南高考理科数学真题及答案.doc
2004年海南高考理科数学真题及答案.doc
免费
20下载
2020年高考数学试卷(理)(新课标Ⅰ)(空白卷) (1).pdf
2020年高考数学试卷(理)(新课标Ⅰ)(空白卷) (1).pdf
免费
0下载
2018年全国统一高考数学试卷(文科)(新课标ⅰ).doc
2018年全国统一高考数学试卷(文科)(新课标ⅰ).doc
免费
0下载
2012年高考数学试卷(文)(四川)(空白卷).doc
2012年高考数学试卷(文)(四川)(空白卷).doc
免费
0下载
2024年高考数学试卷(新课标Ⅱ卷)(空白卷) (9).docx
2024年高考数学试卷(新课标Ⅱ卷)(空白卷) (9).docx
免费
0下载
2000年高考数学真题(文科)(天津自主命题).doc
2000年高考数学真题(文科)(天津自主命题).doc
免费
27下载
2024年新高考数学复习资料专题18 抛物线中的参数及范围问题(原卷版).docx
2024年新高考数学复习资料专题18 抛物线中的参数及范围问题(原卷版).docx
免费
0下载
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
27下载
2017年高考数学试卷(文)(新课标Ⅰ)(解析卷) (7).pdf
2017年高考数学试卷(文)(新课标Ⅰ)(解析卷) (7).pdf
免费
0下载
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (5).pdf
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (5).pdf
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群