2014年高考数学试卷(文)(新课标Ⅰ)(解析卷) (2).pdf本文件免费下载 【共22页】

2014年高考数学试卷(文)(新课标Ⅰ)(解析卷) (2).pdf
2014年高考数学试卷(文)(新课标Ⅰ)(解析卷) (2).pdf
2014年高考数学试卷(文)(新课标Ⅰ)(解析卷) (2).pdf
第1页|共22页2014年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【考点】1E:交集及其运算.菁优网版权所有【专题】5J:集合.【分析】根据集合的基本运算即可得到结论.【解答】解:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1},故选:B.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)若tanα>0,则()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0【考点】GC:三角函数值的符号.菁优网版权所有【专题】56:三角函数的求值.【分析】化切为弦,然后利用二倍角的正弦得答案.【解答】解: tanα>0,∴,则sin2α=2sinαcosα>0.故选:C.【点评】本题考查三角函数值的符号,考查了二倍角的正弦公式,是基础题.第2页|共22页3.(5分)设z=+i,则|z|=()A.B.C.D.2【考点】A5:复数的运算.菁优网版权所有【专题】11:计算题;5N:数系的扩充和复数.【分析】先求z,再利用求模的公式求出|z|.【解答】解:z=+i=+i=.故|z|==.故选:B.【点评】本题考查复数代数形式的运算,属于容易题.4.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2B.C.D.1【考点】KC:双曲线的性质.菁优网版权所有【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】由双曲线方程找出a,b,c,代入离心率,从而求出a.【解答】解:由题意,e===2,解得,a=1.故选:D.【点评】本题考查了双曲线的定义,属于基础题.5.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数第3页|共22页C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.菁优网版权所有【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解: f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.【考点】9S:数量积表示两个向量的夹角.菁优网版权所有【专题】5A:平面向量及应用.【分析】利用向量加法的三角形法则,将,分解为+和+的形式,进而根据D,E,F分别为△ABC的三边BC,CA,AB的中点,结合数乘向量及向量加法的平行四边形法则得到答案.【解答】解: D,E,F分别为△ABC的三边BC,CA,AB的中点,∴+=(+)+(+)=+=(+)=,故选:A.第4页|共22页【点评】本题考查的知识点是向量在几何中的应用,熟练掌握向量加法的三角形法则和平行四边形法则是解答的关键.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③【考点】H1:三角函数的周期性.菁优网版权所有【专题】57:三角函数的图像与性质.【分析】根据三角函数的周期性,求出各个函数的最小正周期,从而得出结论.【解答】解: 函数①y=cos丨2x丨=cos2x,它的最小正周期为=π,②y=丨cosx丨的最小正周期为=π,③y=cos(2x+)的最小正周期为=π,④y=tan(2x﹣)的最小正周期为,故选:A.第5页|共22页【点评】本题主要考查三角函数的周期性及求法,属于基础题.8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【考点】L7:简单空间图形的三视图...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群