精品解析:上海市静安区2022届高考二模数学试题(原卷版).docx本文件免费下载 【共6页】

精品解析:上海市静安区2022届高考二模数学试题(原卷版).docx
精品解析:上海市静安区2022届高考二模数学试题(原卷版).docx
精品解析:上海市静安区2022届高考二模数学试题(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2021学年第二学期高三数学学科适应性练习考生注意:1.本试卷共4页,21道试题,满分150分,考试时间120分钟.2.本考试分设试卷和答题纸.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.一、填空题(本大题共12题,满分54分)第1-6题,每题4分,第7-12题,每题5分1.已知集合,,则__________.2.已知复数满足,其中i是虚数单位,则的虚部为__________.3.双曲线的焦点到其渐近线的距离是__________.4.解指数方程:__________.5.已知椭圆的一个焦点坐标为,则__________.6.直线l的方向向量,且经过曲线的中心,则直线l的方程为__________.7.函数的定义域是__________.8.若,满足约束条件,则的最小值为______.9.若函数的反函数为,则不等式的解集是__________.10.上海进博会是世界上第一个以进口为主题的国家级展览会,每年举办一次.现有6名志愿者去两个进博会场馆工作,每个场馆都需要3人,则甲乙两人被分配到同一个场馆的概率是__________.11.数列满足,,若对于大于2的正整数,,则__________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com12.已知函数,若对任意,当时,总有成立,则实数的最大值为__________.二、选择题(本大题共4题,每题5分,满分20分)13.2022年2月4日至2月20日春节期间,第24届冬奥会在北京市和张家口市联合举行.共有个冬奥村供运动员和代表队官员入住,其中北京冬奥村的容量约为人,延庆冬奥村的容量约人,张家口冬奥村的容量约人.为了解各冬奥村服务质量,现共准备了份调查问卷,采用分层抽样的方法,则需在延庆冬奥村投放的问卷数量是()A.58份B.50份C.32份D.19份14.设,,且,均为非零向量,则“”是“”的()条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要15.中国古代建筑使用榫卯结构将木部件连接起来,构件中突出的部分叫榫头,凹进去的部分叫卯眼,图中摆放的部件是榫头,现要在一个木头部件中制作出卯眼,最终完成一个直角转弯结构的部件,那么卯眼的俯视图可以是()A.B.C.D.16.在下列判断两个平面与平行的4个命题中,真命题的个数是().小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)、都垂直于平面r,那么∥.(2)、都平行于平面r,那么∥.(3)、都垂直于直线l,那么∥.(4)如果l、m是两条异面直线,且∥,∥,∥,∥,那么∥A.0B.1C.2D.3三、解答题(本大题共5题,满分76分)17.在四棱锥中,底面是边长为2的菱形,,对角线与相交于点,平面,与平面所成的角为60度.(1)求四棱锥的体积;(2)若是的中点,求异面直线与所成角的大小(结果用反三角函数值表示)18.设函数.(1)若,且函数与的图像有横纵坐标均为正整数的交点,求m的值;(2)设,,在锐角△ABC中,内角对应的边分别为,若,,求△ABC的面积.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com19.某便民超市经销一种小袋装地方特色桃酥食品,每袋桃酥的成本为6元,预计当一袋桃酥的售价为元时,一年的销售量为万袋,并且全年该桃酥食品共需支付万元的管理费.一年的利润一年的销售量售价(一年销售桃酥的成本一年的管理费).(单位:万元)(1)求该超市一年的利润(万元)与每袋桃酥食品的售价的函数关系式;(2)当每袋桃酥的售价为多少元时,该超市一年的利润最大,并求出的最大值.20.如图,点是轴左侧(不含轴)一点,抛物线上存在不同的两点,且的中点均在抛物线C上.(1)若,点A在第一象限,求此时点A的坐标;(2)设中点为,求证:直线轴;(3)若是曲线上的动点,求面积的最大值.21.若数列同时满足下列两个条件,则称数列具有“性质A”.①();②存在实数,使得对任意,有成立.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)设,试判断是否具有“性质A”;(2)设递增的等比数列的前n项和为,若,证明:数列具有“性质A”,并求出A的取值范围;(3)设数列的通项公式,若数列具有“性质A”,其满足条件的A的最大值,求的值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
免费
0下载
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
免费
0下载
2016年海南省高考数学试题及答案(文科).doc
2016年海南省高考数学试题及答案(文科).doc
免费
4下载
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
免费
0下载
2008年高考数学试卷(理)(北京)(空白卷).doc
2008年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
1997年高考数学真题(文科)(湖南自主命题).doc
1997年高考数学真题(文科)(湖南自主命题).doc
免费
17下载
2018年高考数学真题(文科)(天津自主命题).doc
2018年高考数学真题(文科)(天津自主命题).doc
免费
23下载
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
免费
0下载
2006年重庆高考文科数学真题及答案.doc
2006年重庆高考文科数学真题及答案.doc
免费
3下载
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
免费
0下载
2019年高考数学真题(理科)(北京自主命题).docx
2019年高考数学真题(理科)(北京自主命题).docx
免费
5下载
2014年高考数学试卷(文)(广东)(空白卷).doc
2014年高考数学试卷(文)(广东)(空白卷).doc
免费
0下载
2016年上海市闸北区高考数学二模试卷(文科).doc
2016年上海市闸北区高考数学二模试卷(文科).doc
免费
0下载
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
免费
0下载
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
免费
20下载
2017年上海市奉贤区高考数学一模试卷.doc
2017年上海市奉贤区高考数学一模试卷.doc
免费
0下载
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群