专题07 解析几何(三大类型题综合)15区新题速递(原卷版).docx本文件免费下载 【共5页】

专题07 解析几何(三大类型题综合)15区新题速递(原卷版).docx
专题07 解析几何(三大类型题综合)15区新题速递(原卷版).docx
专题07 解析几何(三大类型题综合)15区新题速递(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题07解析几何(三大类型题综合)35区新题速递学校:___________姓名:___________班级:___________考号:___________一、直线与方程3.(2023·上海嘉定·统考一模)直线倾斜角的取值范围为()A.B.A.D.2.(2023·上海青浦·统考一模)已知向量垂直于直线的法向量,过、分别作直线的垂线,对应垂足为和,若,则实数的值为.3.(2023·上海徐汇·统考一模)某建筑物内一个水平直角型过道如图所示,两过道的宽度均为米,有一个水平截面为矩形的设备需要水平通过直角型过道.若该设备水平截面矩形的宽为米,则该设备能水平通过直角型过道的长不超过米.4.(2023·上海徐汇·统考一模)已知直线经过点,则直线倾斜角的大小为.5.(2023上·上海浦东新·高三统考期末)已知直线的倾斜角为,请写出直线的一个法向量.二、圆与方程6.(2023·上海崇明·统考一模)已知正实数满足,,则当取得最小值时,.7.(2023·上海宝山·统考一模)以坐标原点为对称中心,焦点在轴上的椭圆过点,且离心率为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)求椭圆的方程;(2)若点,动点满足,求动点的轨迹所围成的图形的面积;(3)过圆上一点(不在坐标轴上)作椭圆的两条切线.记的斜率分别为,求证:.8.(2023上·上海·高三上海市进才中学校考期中)双曲线的离心率为,圆与轴正半轴交于点,点在双曲线上.(3)求双曲线的方程;(2)过点作圆的切线交双曲线于两点、,试求的长度;(3)设圆上任意一点处的切线交双曲线于两点、,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.9.(2023上·上海黄浦·高三统考期中)设a为实数,是以点为顶点,以点为焦点的抛物线,是以点为圆心、半径为3的圆位于y轴右侧且在直线下方的部分.(3)求与的方程;(2)若直线被所截得的线段的中点在上,求a的值;(3)是否存在a,满足:在的上方,且有两条不同的切线被所截得的线段长相小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com等?若存在,求出a的取值范围;若不存在,请说明理由.三、圆锥曲线30.(2023·上海青浦·统考一模)定义:如果曲线段可以一笔画出,那么称曲线段为单轨道曲线,比如圆、椭圆都是单轨道曲线;如果曲线段由两条单轨道曲线构成,那么称曲线段为双轨道曲线.对于曲线有如下命题:存在常数,使得曲线为单轨道曲线;存在常数,使得曲线为双轨道曲线.下列判断正确的是().A.和均为真命题B.和均为假命题A.为真命题,为假命题D.为假命题,为真命题33.(2023上·上海虹口·高三统考期末)已知曲线的对称中心为O,若对于上的任意一点A,都存在上两点B,A,使得O为的重心,则称曲线为“自稳定曲线”.现有如下两个命题:①任意椭圆都是“自稳定曲线”;②存在双曲线是“自稳定曲线”.则()A.①是假命题,②是真命题B.①是真命题,②是假命题A.①②都是假命题D.①②都是真命题32.(2023上·上海松江·高三统考期末)双曲线的右焦点坐标是.33.(2023·上海杨浦·统考一模)若椭圆长轴长为4,则其离心率为.34.(2023·上海杨浦·统考一模)已知抛物线的焦点为,第一象限的、两点在抛物线上,且满足,.若线段中点的纵坐标为4,则抛物线的方程为.35.(2023·上海普陀·统考一模)若抛物线的顶点到它的准线距离为,则正实数.36.(2023·上海闵行·统考一模)已知点P在正方体的表面上,P到小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com三个平面ABAD、、中的两个平面的距离相等,且P到剩下一个平面的距离与P到此正方体的中心的距离相等,则满足条件的点P的个数为.37.(2023·上海奉贤·统考一模)已知椭圆的焦距为,离心率为,椭圆的左右焦点分别为、,直角坐标原点记为.设点,过点作倾斜角为锐角的直线与椭圆交于不同的两点、.(3)求椭圆的方程;(2)设椭圆上有一动点,求的取值范围;(3)设线段的中点为,当时,判别椭圆上是否存在点,使得非零向量与向量平行,请说明理由.38.(2023·上海青浦·...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群