精品解析:上海市松江区2022届高考二模数学试题(原卷版).docx本文件免费下载 【共5页】

精品解析:上海市松江区2022届高考二模数学试题(原卷版).docx
精品解析:上海市松江区2022届高考二模数学试题(原卷版).docx
精品解析:上海市松江区2022届高考二模数学试题(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com松江区高三数学练习(满分150分,完卷时间120分钟)2022.6考生注意:1.本考试设试卷和答题纸两部分,试卷包括试题与答题要求,所有答题必须涂(选择题)或写(非选择题)在答题纸上,做在试卷上一律不得分.2.答题前,务必在答题纸上填写学校、班级、姓名和考号.3.答题纸与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位.一、填空题1.已知集合,集合,则=_______.2.若复数,其中为虚数单位,则_______.3.已知角为的内角,,则_________.4.若函数的反函数的图像经过点,则=_______.5.在的展开式中,含的系数为______.6.若实数、满足约束条件,则的最小值是_____.7.从1,2,3,4,5这五个数字中任意选取两个不同的数字组成一个两位数,则这个两位数是偶数的概率为_______.8.如图所示,在正方体中,若是的中点,则异面直线与所成角的大小为_______.(结果用反三角函数表示)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com9.已知正实数、满足,则的最小值为_______.10.已知数列的首项,且对任意的,都有,则______.11.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线斜率的最大值为_______.12.已知函数,是定义在R上的奇函数,且满足,当时,.则当时,方程实根的个数为_______.二、选择题13.下列函数中,与函数的奇偶性和单调性都一致的函数是()A.B.C.D.14.在2022北京冬奥会单板滑雪U型场地技巧比赛中,6名评委给选手打出了6个各不相同的原始分,经过“去掉其中一个最高分和一个最低分”处理后,得到4个有效分.则经处理后的4个有效分与6个原始分相比,一定会变小的数字特征是()A.平均数B.中位数C.众数D.方差15.设函数图像的一条对称轴方程为,若、是函数的两个不同的零点,则的最小值为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.16.已知正方形的边长为4,点、分别在边、上,且,,若点在正方形的边上,则的取值范围是()A.B.C.D.三、解答题17.如图,在四棱锥中,底面是矩形,平面,,,是的中点,点在棱上.(1)求四棱锥的全面积;(2)求证:.18.在等差数列中,已知,.(1)求数列的通项公式;(2)若数列是首项为1,公比为3的等比数列,求数列的前项和.19.如图,农户在米、米的长方形地块上种植向日葵,并在处安装监控摄像头及时了解向日葵的生长情况.监控摄像头可捕捉到图像的角度范围为,其中点、分别在长方形的边、上,监控的区域为四边形.记.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)当时,求、两点间的距离;(结果保留整数)(2)问当取何值时,监控区域四边形的面积最大?最大值为多少?(结果保留整数)20.已知椭圆的右顶点坐标为,左、右焦点分别为、,且,直线交椭圆于不同的两点和.(1)求椭圆的方程;(2)若直线的斜率为,且以为直径的圆经过点,求直线的方程;(3)若直线与椭圆相切,求证:点、到直线的距离之积为定值.21.对于定义在R上的函数,若存在正数m与集合A,使得对任意的,当,且时,都有,则称函数具有性质.(1)若,判断是否具有性质,并说明理由;(2)若,且具有性质,求m的最大值;(3)若函数的图像是连续曲线,且当集合(a为正常数)时,具有性质,证明:是R上的单调函数.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群