精品解析:上海市奉贤区2023届高三二模数学试题(解析版).docx本文件免费下载 【共22页】

精品解析:上海市奉贤区2023届高三二模数学试题(解析版).docx
精品解析:上海市奉贤区2023届高三二模数学试题(解析版).docx
精品解析:上海市奉贤区2023届高三二模数学试题(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2022学年奉贤区第二学期高三数学练习卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.已知集合,,若,则____________.【答案】【解析】【分析】由交集定义可得答案.【详解】因,,,则,故.故答案为:2.已知,,且,是虚数单位,则____________.【答案】【解析】【分析】由复数相等概念可得答案.【详解】因,则.故答案为:23.在的展开式中,的系数为___.(用数字作答)【答案】40【解析】【分析】根据所给的二项式写出通项,要求自变量的二次方的系数,只要使得指数等于2,得出式子中的系数的表示式,得到结果.【详解】 (2x+1)5的通项式式是C5r(2x)5﹣r=∁5r25﹣rx5﹣r当5﹣r=2时,即r=3时,得到含有x2的项,∴它的系数是C5322=40故答案为40.【点睛】本题考查二项式定理的应用,本题解题的关键是写出二项式的通项.4.已知圆柱的上、下底面的中心分别为、,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的侧面积为_____.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】【解析】【分析】根据题意求出圆柱的底面圆半径和高,再计算圆柱的侧面积即可.【详解】如图所示,设圆柱的底面圆半径为,由截面为正方形可知圆柱的高,所以该圆柱的轴截面面积为,解得,该圆柱的侧面积为.故答案为.【点睛】本题考查圆柱的结构特征,考查圆柱侧面积的求法,属于基础题.5.2017年5月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩.(试卷满分为150分)统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的,则此次统考中成绩不低于120分的学生人数约为__________.【答案】【解析】【分析】根据正态分布对称性知,计算得到答案.【详解】根据正态分布对称性知:.故此次统考中成绩不低于120分的学生人数约为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故答案为:.【点睛】本题考查了正态分布,意在考查学生对于正态分布性质的应用.6.已知两个正数,的几何平均值为1,则的最小值为____________.【答案】【解析】【分析】由几何平均值的定义得到,利用基本不等式求解即可.【详解】由题意得,即,故,当且仅当时,等号成立,故答案为:27.某种动物从出生起活到20岁的概率为0.8,从出生起活到25岁的概率为0.4,现有一个20岁的这种动物,它能活到25岁的概率为____________.【答案】【解析】【分析】利用条件概率的计算公式即可得出.【详解】设事件A表示某动物活到20岁,则;事件B表示该动物活到25岁,则,所以.故答案为:.8.已知随机变量的分布为,且,若,则实数_______.【答案】【解析】【分析】由期望性质可得答案.【详解】因,则.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又,则.故选:.9.设圆与双曲线的一条渐近线相切,则该双曲线的渐近线方程为___________.【答案】【解析】【分析】由题可知渐近线到圆心距离等于圆半径,据此可得答案.【详解】设双曲线渐近线方程为:,,则圆心坐标为,半径为1.因圆与渐近线相切,则圆心到切线距离等于半径,即.则双曲线的一条渐近线方程为,另一条渐近线方程为.故答案为:10.内角的对边分别为,若的面积为,则_________【答案】【解析】【分析】由余弦定理可得,根据条件结合三角形的面积公式可得从而可得答案.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】由余弦定理可得,所以的面积为所以即,由所以故答案为:11.在集合中任取一个偶数和一个奇数构成一个以原点为起点的向量,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,面积不超过4的平行四边形的个数是___________.【答案】【解析】【分析】由题可得满足题意的向量有4个,满足题意的平行四边形有6个,依次计算6个平行四边形的面积即可得答案.【详解】由题可得满足题意的向量有,又若两向量不共线,且,则以两向量为邻边的平行...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群