专题19 坐标系与参数方程不等式选讲系列 (解析版).docx本文件免费下载 【共31页】

专题19  坐标系与参数方程不等式选讲系列  (解析版).docx
专题19  坐标系与参数方程不等式选讲系列  (解析版).docx
专题19  坐标系与参数方程不等式选讲系列  (解析版).docx
五年(2019-2023)年高考真题分项汇编专题19坐标系与参数方程及不等式选讲系列考点01坐标系与参数方程考点02不等式选讲系列考点01坐标系与参数方程1.(2023年全国甲卷理科)已知点,直线(t为参数),为的倾斜角,l与x轴正半轴,y轴正半轴分别交于A,B两点,且.(1)求;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求l的极坐标方程.【答案】(1)(2)【解析】:(1)因为与轴,轴正半轴交于两点,所以,令,,令,,所以,所以,即,解得,因为,所以.(2)由(1)可知,直线的斜率为,且过点,所以直线的普通方程为:,即,由可得直线的极坐标方程为.2.(2023年全国乙卷理科·第22题)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线:(为参数,).(1)写出的直角坐标方程;(2)若直线既与没有公共点,也与没有公共点,求的取值范围.【答案】(1)(2)【解析】:(1)因为,即,可得,整理得,表示以为圆心,半径为1的圆,又因为,且,则,则,故.(2)因为(为参数,),整理得,表示圆心为,半径为2,且位于第二象限的圆弧,如图所示,若直线过,则,解得;若直线,即与相切,则,解得,若直线与均没有公共点,则或,即实数的取值范围.3.(2022年高考全国乙卷数学(理))在直角坐标系中,曲线C的参数方程为,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为.(1)写出l的直角坐标方程;(2)若l与C有公共点,求m的取值范围.【答案】(1)(2)【解析】:【小问1详解】因为l:,所以,又因为,所以化简为,整理得l的直角坐标方程:【小问2详解】联立l与C的方程,即将,代入中,可得,所以,化简为,要使l与C有公共点,则有解,令,则,令,,对称轴为,开口向上,所以,,所以m的取值范围为.4.(2022年高考全国甲卷数学(理))在直角坐标系中,曲线的参数方程为(t为参数),曲线的参数方程为(s为参数).(1)写出的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,求与交点的直角坐标,及与交点的直角坐标.【答案】(1);(2)的交点坐标为,,的交点坐标为,.【分析】(1)消去,即可得到的普通方程;(2)将曲线的方程化成普通方程,联立求解即解出.【详解】(1)因为,,所以,即的普通方程为.(2)因为,所以,即的普通方程为,由,即的普通方程为.联立,解得:或,即交点坐标为,;联立,解得:或,即交点坐标为,.5.(2021年高考全国甲卷)在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)将C的极坐标方程化为直角坐标方程;(2)设点A的直角坐标为,M为C上的动点,点P满足,写出Р的轨迹的参数方程,并判断C与是否有公共点.【答案】(1);(2)P的轨迹的参数方程为(为参数),C与没有公共点.【解析】:(1)由曲线C的极坐标方程可得,将代入可得,即,即曲线C的直角坐标方程为;(2)设,设,,则,即,故P的轨迹的参数方程为(为参数)曲线C的圆心为,半径为,曲线的圆心为,半径为2,则圆心距为,,两圆内含,故曲线C与没有公共点.6(2021·全国·统考高考乙卷真题)在直角坐标系中,的圆心为,半径为1.(1)写出的一个参数方程;(2)过点作的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.【答案】(1),(为参数);(2)和.【分析】(1)直接利用圆心及半径可得的圆的参数方程;(2)先求得过(4,1)的圆的切线方程,再利用极坐标与直角坐标互化公式化简即可.【详解】(1)由题意,的普通方程为,所以的参数方程为,(为参数)(2)[方法一]:直角坐标系方法①当直线的斜率不存在时,直线方程为,此时圆心到直线的距离为,故舍去.②当切线斜率存在时,设其方程为,即.故,即,解得.所以切线方程为或.两条切线的极坐标方程分别为和.即和.[方法二]【最优解】:定义求斜率法如图所示,过点F作的两条切线,切点分别为A,B.在中,,又轴,所以两条切线的斜率分别和.故切线的方程为,,这两条切线的极坐标方程为和.即和.7.(2020年高考课标Ⅰ卷)在直角坐标系中,曲线的参数方程为...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群