专题04 勾股定理与几何图形的三种考法全攻略(教师版)-2023年初中数学8年级下册同步压轴题.docx本文件免费下载 【共20页】

专题04 勾股定理与几何图形的三种考法全攻略(教师版)-2023年初中数学8年级下册同步压轴题.docx
专题04 勾股定理与几何图形的三种考法全攻略(教师版)-2023年初中数学8年级下册同步压轴题.docx
专题04 勾股定理与几何图形的三种考法全攻略(教师版)-2023年初中数学8年级下册同步压轴题.docx
专题04勾股定理与几何图形的三种考法全攻略类型一、折叠问题例1.如图,将等边折叠,使得点C落在边上的点D处,是折痕,若,,则的长是()A.2B.4C.D.【答案】D【详解】解: 将等边折叠,使得点C落在边上的点D处,∴,,, ,,∴,∴,∴,故选:D.例2.如图,在长方形中,,点为边上的一个动点,把沿折叠,若点的对应点刚好落在边的垂直平分线上,则的长为____________.【答案】【详解】解: 四边形为矩形,,是边的垂直平分线,∴,,,∴四边形为矩形,,根据折叠的性质,可知,,∴在中,,∴,设,则,∴在中,可有,即,解得,∴的长为.故答案为:.【变式训练1】如图,在平面直角坐标系中,点A的坐标为,过点A分别作轴于点B,轴于点C,点D在射线上.将沿直线翻折,使点A恰好落在坐标轴上,则点D的坐标为____________.【答案】或或【详解】解:①如图,设翻折之后的A落点点E,作.设,由题意可得,,, 与关于直线对称,∴,,在Rt中,,∴.在Rt中,,∴,即,解得,∴点D的坐标是.②如图2:翻折之后A点落在y轴上时,即图中点E,,这时,,可求出D点坐标为;③如图3,当翻折之后A点落在x轴负半轴时,,在Rt中,,则,Rt中,设,利用勾股定理得到,解得D点坐标为故:D的坐标为或或.【变式训练2】如图,在中,,点、是边上的点,点在边上,连接、,将分别沿直线和折叠,使点、的对称点重合在边上的点处.若,,则的长是______.【答案】【详解】解:,.由翻折可知:,设,则,在中,根据勾股定理得:解得,故答案为:.【变式训练3】如图,将长方形沿着折叠,使得点D恰好落在边上的处,若,,则的面积为_____.【答案】45【详解】解:过点E作,设,则,,根据勾股定理可得,,解得:,∴,设,则,根据勾股定理可得:解得,,∴-故答案为:45.【变式训练4】如图,纸片中,,,,,点D在边BC上,以AD为折痕折叠得到,与边BC交于点E,若为直角三角形,则BD的长是______.【答案】或【详解】解: 纸片中,,,∴, 以为折痕,折叠得到,∴,,.当时,如图1所示, ,∴. ,∴,∴,∴,∴,∴;当时,如图2所示,C与点E重合, ,∴,设,则,在中,,∴,解得:,∴,综上所述,的长为或,故答案为:或.【变式训练5】如图,矩形中,,,点为上一个动点,把沿折叠,当点的对应点落在的角平分线上时,的长为______.【答案】或【详解】解:如图,连接,过作,交于点,于点,作交于点点的对应点落在的角平分线上,,设,则,,又折叠图形可得,,解得或,即或.在中,设,当时,,,,,解得,即,当时,,,,,解得,即.故答案为:或.类型二、勾股弦图例.我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,连接,交于点,如图所示,若正方形的面积为,,则的值是()A.3B.3.5C.4D.7【答案】B【详解】 正方形的面积为,∴,设, ,∴,中,由勾股定理得:,∴,∴, ,,∴,∴, “赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,∴,∴,∴,∴,,∴, ,则的值是;故选:B.【变式训练1】阅读材料:通过整式乘法的学习,我们进一步了解了利用图形面积来说明法则、公式等的正确性的方法,例如利用图甲可以对平方差公式给予解释.图乙中的是一个直角三角形,,人们很早就发现直角三角形的三边,b,c满足的关系,我国汉代“赵爽弦图”(如图丙)就巧妙的利用图形面积证明了这一关系.请回答:下列几何图形中,可以正确的解释直角三角形三边这一关系的图有______(直接填写图序号).【答案】③④【详解】解:①长方形的面积:,②,③,整理,得,④,整理,得,故答案为:③④.【变式训练2】我国古代称直角三角形为“勾股形”,并且直角边中较短边为勾,另一直角边为股,斜边为弦如图1所示,数学家刘徽(约公元年公元年)将勾股形分割成一个正方形和两对全等的直角三角形,后人借助这种分割方法所得的图形证明了勾股定理如图2所示的长方形是由两个完全相同的“勾股形”拼接而成,若,,则长方形的面积为______.【答案】【详解】解:设小正方形的边长...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
人教八年级数学上册 专题01 多边形的内角和(原卷版).docx
人教八年级数学上册 专题01 多边形的内角和(原卷版).docx
免费
0下载
人教八年级数学上册 13.2 画轴对称图形-八年级数学人教版(上)(解析版).doc
人教八年级数学上册 13.2 画轴对称图形-八年级数学人教版(上)(解析版).doc
免费
0下载
初中八年级上册数学1·北京市平谷区期末卷.doc
初中八年级上册数学1·北京市平谷区期末卷.doc
免费
1下载
初中八年级数学上册第12章 全等三角形 单元检测 (1).doc
初中八年级数学上册第12章 全等三角形 单元检测 (1).doc
免费
19下载
人教八年级数学下册 专题02 二次根式计算的两种压轴题全攻略(解析版).docx
人教八年级数学下册 专题02 二次根式计算的两种压轴题全攻略(解析版).docx
免费
0下载
华东师大八年级数学上册勾股定理.doc
华东师大八年级数学上册勾股定理.doc
免费
15下载
数学:14.1变量与函数(第2课时)同步练习(人教新课标八年级上).doc
数学:14.1变量与函数(第2课时)同步练习(人教新课标八年级上).doc
免费
0下载
八年级上册 数学专题强化训练01  等腰(边)三角形的判定与性质(30题)(原卷版).pdf
八年级上册 数学专题强化训练01 等腰(边)三角形的判定与性质(30题)(原卷版).pdf
免费
0下载
人教八年级数学上册 专题04 倍长中线模型(解析版).docx
人教八年级数学上册 专题04 倍长中线模型(解析版).docx
免费
0下载
人教八年级数学上册 专题07 一线三等角模型压轴题真题分类(原卷版)—2022-2023学年八年级数学上册重难点题型分类高分必刷题(人教版).docx
人教八年级数学上册 专题07 一线三等角模型压轴题真题分类(原卷版)—2022-2023学年八年级数学上册重难点题型分类高分必刷题(人教版).docx
免费
0下载
八年级数学上册 新沪科版八年级上册《12.1 函数》专题训练(含答案).doc
八年级数学上册 新沪科版八年级上册《12.1 函数》专题训练(含答案).doc
免费
7下载
新8年级(七升八)-初中数学暑假衔接沪教版(上海)八年级第一学期同步第20讲:线段垂直平分线及角平分线教师版.docx
新8年级(七升八)-初中数学暑假衔接沪教版(上海)八年级第一学期同步第20讲:线段垂直平分线及角平分线教师版.docx
免费
0下载
人教八年级数学下册 难点特训(三)和特殊四边形动点有关的压轴大题(原卷版).docx
人教八年级数学下册 难点特训(三)和特殊四边形动点有关的压轴大题(原卷版).docx
免费
0下载
数学 八年级同步第11讲:一元二次方程的应用(二).docx
数学 八年级同步第11讲:一元二次方程的应用(二).docx
免费
3下载
人教八年级数学上册 专题05 解题技巧专题:判定三角形全等的基本思路(解析版)(重点突围)-2023年八上重难点专题提优训练(人教版).docx
人教八年级数学上册 专题05 解题技巧专题:判定三角形全等的基本思路(解析版)(重点突围)-2023年八上重难点专题提优训练(人教版).docx
免费
0下载
初中八年级下册数学第五章 分式与分式方程 周周测7(5.4).doc
初中八年级下册数学第五章 分式与分式方程 周周测7(5.4).doc
免费
26下载
数学答案(台州)-2411名校发展共同体八上期中.pdf
数学答案(台州)-2411名校发展共同体八上期中.pdf
免费
0下载
八年级上册 数学第2章第06讲 易错易混淆集训:实数(4类热点易错题型讲练)(原卷版).pdf
八年级上册 数学第2章第06讲 易错易混淆集训:实数(4类热点易错题型讲练)(原卷版).pdf
免费
0下载
人教八年级数学下册 专题02 二次根式的乘除(四大题型)(题型专练)(解析版).docx
人教八年级数学下册 专题02 二次根式的乘除(四大题型)(题型专练)(解析版).docx
免费
0下载
数学答案-2411舟山市属五校八上期中.pdf
数学答案-2411舟山市属五校八上期中.pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料