2024年高考生物一轮复习讲义(新人教版)第8章 必刷小题16 圆锥曲线.docx本文件免费下载 【共2页】

2024年高考生物一轮复习讲义(新人教版)第8章 必刷小题16 圆锥曲线.docx
2024年高考生物一轮复习讲义(新人教版)第8章 必刷小题16 圆锥曲线.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com一、单项选择题1.(2023·淄博模拟)双曲线-x2=1的离心率为()A.B.C.D.2.(2022·州模郑拟)已知椭圆C:+=1(a>b>0)的离心率为,以C的上、下顶点和一个焦点为顶点的三角形的面积为48,则椭圆的长轴长为()A.5B.10C.15D.203.(2022·春模长拟)已知M为抛物线C:x2=2py(p>0)上一点,点M到C的焦点的距离为7,到x轴的距离为5,则p等于()A.3B.4C.5D.64.(2023·河北衡水中学检测)阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为,面积为12π,则椭圆C的方程为()A.+=1B.+=1C.+=1D.+=15.(2022·州模滁拟)已知椭圆+=1的左、右焦点分别为F1,F2,点P在椭圆上且在x轴的下方,若线段PF2的中点在以原点O为圆心,OF2为半径的圆上,则直线PF2的倾斜角为()A.B.C.D.6.(2023·石家庄模拟)已知,点P是抛物线C:y2=4x上的动点,过点P向y轴作垂线,垂足记为点N,点M(3,4),则|PM|+|PN|的最小值是()A.2-1B.-1C.+1D.2+17.(2022·德州考联)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,曲线C上一点P到x轴的距离为c,且∠PF2F1=120°,则双曲线C的离心率为()A.+1B.C.+1D.8.(2022·云港模连拟)直线l:y=-x+1与抛物线C:y2=4x交于A,B两点,圆M过两点A,B且与抛物线C的准线相切,则圆M的半径是()A.4B.10C.4或10D.4或12二、多项选择题9.(2023·南模济拟)已知双曲线C:-=1(m>0),则下列说法正确的是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.双曲线C的实轴长为2B.双曲线C的焦点到渐近线的距离为mC.若(2,0)是双曲线C的一个焦点,则m=2D.若双曲线C的两条渐近线相互垂直,则m=210.(2022·坊模潍拟)已知抛物线x2=y的焦点为F,M(x1,y1),N(x2,y2)是抛物线上两点,则下列结论正确的是()A.点F的坐标为B.若直线MN过点F,则x1x2=-C.若MF=λNF,则|MN|的最小值为D.若|MF|+|NF|=,则线段MN的中点P到x轴的距离为11.(2023·湖北四地考联)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,长轴长为4,点P(,1)在椭圆C外,点Q在椭圆C上,则()A.椭圆C的离心率的取值范围是B.当椭圆C的离心率为时,|QF1|的取值范围是[2-,2+]C.存在点Q使得QF1·QF2=0D.+的最小值为112.(2022·宁模济拟)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,左、右顶点分别为A1,A2,点P是双曲线C上异于顶点的一点,则()A.||PA1|-|PA2||=2aB.若焦点F2关于双曲线C的渐近线的对称点在C上,则C的离心率为C.若双曲线C为等轴双曲线,则直线PA1的斜率与直线PA2的斜率之积为1D.若双曲线C为等轴双曲线,且∠A1PA2=3∠PA1A2,则∠PA1A2=三、填空题13.(2022·烟台模拟)写出一个满足以下三个条件的椭圆的方程________________.①中心为坐标原点;②焦点在坐标轴上;③离心率为.14.(2023·衡水中模学拟)若双曲线-=1(a>0,b>0)的离心率为2,则其两条渐近线所成的锐角为________.15.(2023·海模东拟)我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微”.事实上,很多代数问题可以转化为几何问题加以解决,如:与相关的代数问题可以转化为点A(x,y)与点B(a,b)之间距离的几何问题.结合上述观点,可得方程+=4的解是________.16.(2022·沂模临拟)已知抛物线C:x2=2py(p>0)的焦点为F,Q(2,3)为C内的一点,M为C上的任意一点,且|MQ|+|MF|的最小值为4,则p=________;若直线l过点Q,与抛物线C交于A,B两点,且Q为线段AB的中点,则△AOB的面积为________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024版《大考卷》全程考评特训卷·生物【统考版】考点18.docx
2024版《大考卷》全程考评特训卷·生物【统考版】考点18.docx
免费
9下载
2008年高考生物试卷(上海)(空白卷).doc
2008年高考生物试卷(上海)(空白卷).doc
免费
0下载
2014年重庆市高考生物试卷.doc
2014年重庆市高考生物试卷.doc
免费
0下载
高中2024版考评特训卷·生物【统考版】考点38.docx
高中2024版考评特训卷·生物【统考版】考点38.docx
免费
0下载
上海市松江区2020年高二高三第一学期期末(一模)学科质量检测生物试题及答案(word版).docx
上海市松江区2020年高二高三第一学期期末(一模)学科质量检测生物试题及答案(word版).docx
免费
0下载
2020年全国统一高考生物试卷(新课标ⅰ)(原卷版).doc
2020年全国统一高考生物试卷(新课标ⅰ)(原卷版).doc
免费
6下载
精品解析:2024届上海市嘉定区高三一模生物试题(原卷版).docx
精品解析:2024届上海市嘉定区高三一模生物试题(原卷版).docx
免费
0下载
精品解析:2024届上海市徐汇区高三二模生物试卷(解析版).docx
精品解析:2024届上海市徐汇区高三二模生物试卷(解析版).docx
免费
0下载
高中2024版考评特训卷·生物学【新教材】(不定项版)考点 27.docx
高中2024版考评特训卷·生物学【新教材】(不定项版)考点 27.docx
免费
0下载
高中2024版考评特训卷·生物学【新教材】(不定项版)考点 23.docx
高中2024版考评特训卷·生物学【新教材】(不定项版)考点 23.docx
免费
0下载
2022年高考生物试卷(江苏)(解析卷) (5).docx
2022年高考生物试卷(江苏)(解析卷) (5).docx
免费
0下载
2023《大考卷》二轮专项分层特训卷•生物【统考版】专  题  八.docx
2023《大考卷》二轮专项分层特训卷•生物【统考版】专 题 八.docx
免费
13下载
2021年高考真题—— 生物(广东卷) (原卷版).doc
2021年高考真题—— 生物(广东卷) (原卷版).doc
免费
20下载
2001年广东高考生物真题及答案(图片版) (1).doc
2001年广东高考生物真题及答案(图片版) (1).doc
免费
0下载
2023《微专题·小练习》·生物23微专题生物(老)答案.docx
2023《微专题·小练习》·生物23微专题生物(老)答案.docx
免费
1下载
2022·微专题·小练习·生物【统考版】专练57.docx
2022·微专题·小练习·生物【统考版】专练57.docx
免费
2下载
浙江省台州市五校联盟2022-2023学年高一上学期期中生物试题.pdf
浙江省台州市五校联盟2022-2023学年高一上学期期中生物试题.pdf
免费
25下载
精品解析:2022届上海市松江区高三二模生物试题(原卷版).docx
精品解析:2022届上海市松江区高三二模生物试题(原卷版).docx
免费
0下载
2024年高考生物一轮复习讲义(新人教版)第19讲 基因突变和基因重组.doc
2024年高考生物一轮复习讲义(新人教版)第19讲 基因突变和基因重组.doc
免费
3下载
精品解析:江苏省南通市海门区2023-2024学年高三上学期第一次调研考试生物试题(解析版).docx
精品解析:江苏省南通市海门区2023-2024学年高三上学期第一次调研考试生物试题(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

相关文档
确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群