小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第12讲二次函数的应用(核心考点讲与练)【基础知识】二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.【考点剖析】一、利润问题1.(2021秋•虹口区校级期末)某品牌裙子,平均每天可以售出20条,每条盈利40元,经市场调查发现,如果该品牌每条裙子每降价1元,那么平均每天可以多售出2条,那么当裙子降价15元时,可获得最大利润1250元.【分析】设每件裙子应降价x元,则每件盈利(40﹣x)元,平均每天的销售量为(20+2x)件,根据总利润=每件盈利×平均每天的销售量,即可得出关于x的二次函数关系式,再根据二次函数的性质可得答案.【解答】解:设每件裙子应降价x元,则每件盈利(40﹣x)元,平均每天的销售量为(20+2x)件,依题意得利润w=(40﹣x)(20+2x)=﹣2x2+60x+800=﹣2(x15﹣)2+1250.所以当裙子降价15元时,可以获得最大利润为1250元,故答案为:15,1250.【点评】本题考查二次函数的应用,根据题意列出二次函数关系式是解题关键.2.(2022春•嘉定区校级期中)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如表:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com进货批次A型水杯(个)B型水杯(个)总费用(元)一1002008000二20030013000(1)求A、B两种型号的水杯进价各是多少元?(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?【分析】(1)设A种型号的水杯进价为x元,B种型号的水杯进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据:利润=(每台实际售价﹣每台进价)×销售量,列函数关系式,配方成二次函数的顶点式可得函数的最大值;【解答】解:(1)设A种型号的水杯进价为x元,B种型号的水杯进价为y元,根据题意得:,解得:.答:A种型号的水杯进价为20元,B种型号的水杯进价为30元;(2)设超市应将B型水杯降价m元时,每天售出B型水杯的利润为W元,根据题意,得:W=(44﹣m30﹣)(20+5m)=﹣5m2+50m+280=﹣5(m5﹣)2+405,∴当m=5时,W取得最大值,最大值为405元,答:超市应将B型水杯降价5元时,每天售出B型水杯的利润达到最大,最大利润为405元.【点评】本题主要考查二元一次方程组及二次函数的实际应用,理解题意准确抓住相等关系,据此列出方程或函数关系式是解题的关键.3.(2021春•徐汇区校级月考)某工厂设计了一款产品,成本为每件20元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价x(元)之间满足一次函数的关系,其中20≤x≤40.(1)根据表格求y关于x的函数解析式;销售量y(件)…302010…小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com销售单价x(元)…253035…(2)设销售这种产品每天的利润为W(元),求W关于销售单价x之间的函数解析式并求当销售单价定为多少元时,每天的利润最大?最大利润是多少元?【分析】(1)用待定系数法即可得y关于x的函数解析式;(2)根据总利润=每件利润×销售量可列出W关于销售单价x的函数解析式,由二次函数性质可得答案.【解答】解:(...