小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第17讲二次函数中的角的和差倍半问题(核心考点讲与练)【基础知识】利用角的和差关系,寻找等角,而等角存在两个相似三角形中,往往是子母三角形,利用比例线段构建数量关系【考点剖析】1.(2022徐汇一模24题)如图,抛物线与x轴相交于点A,与y轴交于点B,C为线段OA上的一个动点,过点C作x轴的垂线,交直线AB于点D,交该抛物线于点E.(1)求直线AB的表达式,直接写出顶点M的坐标;(2)当以B,E,D为顶点的三角形与相似时,求点C的坐标;(3)当时,求与的面积之比.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【小问1详解】解:令,则,或,,令,则,,设直线的解析式为,,,,,,;【小问2详解】解:,,是直角三角形,设,①如图1,当,时,,,,(舍或,,;②如图2,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,过点作轴交于点,,,,,,即,,,,(舍或,,;综上所述:点的坐标为,或,;【小问3详解】解:如图3,作的垂直平分线交轴于点,连接,过点作于点,,,,,在中,,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,,设,则,,,,,,,,,,,.2.(2021年青浦二模)已知:如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C,对称轴是直线x=1,顶点是点D.(1)求该抛物线的解析式和顶点D的坐标;(2)点P为该抛物线第三象限上的一点,当四边形PBDC为梯形时,求点P的坐标;(3)在(2)的条件下,点E为x轴正半轴上的一点,当tan(∠PBO+∠PEO)=时,求OE的长.解:(1) 抛物线经过点A(-1,0),对称轴是直线x=1,∴……(2分),解得················································································(1分)∴抛物线的解析式为.把x=1代入抛物线的解析式,得y=4.∴D(1,4).···························································(1分)(2) 点P为抛物线第三象限上的点,且四边形PBDC为梯形,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴CD∥BP.················································································································(1分)延长DC交x轴负半轴于点F,过点D作y轴的垂线,垂足为点G,过点P作x轴的垂线,垂足为点H. C(0,3),D(1,4),∴GD=CG=1.∴∠GDC=45°. GD∥BF,∴∠DFB=∠GDC=45°. CD∥BP,∴∠PBF=∠DFB=45°.···································································································(1分)∴∠PBF=∠HPB,∴PH=BH.设点P的坐标为.由题意可知B(3,0).得.(1分)解得,或.(舍)∴P(-2,-5)(1分)(3) P(-2,-5),∴在Rt△PHO中,.····························································································(1分) ,∴.由(2)可知,,因此,所以点E在点B的右侧.又 ,∴.·········································································(1分) ,∴△OPB∽△OEP.·····································································...