小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题16二次函数y=ax^2与y=ax^2+c图像与性质(基础)【目标导向】1.理解二次函数的概念,能用待定系数法确定二次函数的解析式;2.会用描点法画出二次函数y=ax2(a≠0)与20yaxca的图象,并结合图象理解抛物线、对称轴、顶点、开口方向等概念;3.掌握二次函数y=ax2(a≠0)与20yaxca的图象的性质,掌握二次函数20yaxa与20yaxca之间的关系;(上加下减)。【知识要点精讲梳理】要点一、二次函数的概念1.二次函数的概念一般地,形如y=ax2+bx+c(a≠0,a,b,c为常数)的函数是二次函数.若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2.以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c(a≠0)是二次函数的一般式.二次函数由特殊到一般,可分为以下几种形式:①(a≠0);②(a≠0);③(a≠0);④(a≠0),其中;⑤(a≠0).要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a的绝对值越大,抛物线的开口越小.2.二次函数解析式的表示方法1.一般式:2yaxbxc(a,b,c为常数,0a);2.顶点式:2()yaxhk(a,h,k为常数,0a);3.两根式:12()()yaxxxx(0a,1x,2x是抛物线与x轴两交点的横坐标)(或称交点式).要点诠释:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240bac时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com要点二、二次函数y=ax2(a≠0)的图象及性质1.二次函数y=ax2(a≠0)的图象用描点法画出二次函数y=ax2(a≠0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.因为抛物线y=x2关于y轴对称,所以y轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线y=x2的顶点是图象的最低点。因为抛物线y=x2有最低点,所以函数y=x2有最小值,它的最小值就是最低点的纵坐标.2.二次函数y=ax2(a≠0)的图象的画法用描点法画二次函数y=ax2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x的值,然后计算出对应的y值,这样的对应值选取越密集,描出的图象越准确.要点诠释:二次函数y=ax2(a≠0)的图象.用描点法画二次函数y=ax2(a≠0)的图象,该图象是轴对称图形,对称轴是y轴.y=ax2(a≠0)是最简单的二次函数,把y=ax2(a≠0)的图象左右、上下平行移动可以得到y=ax2+bx+c(a≠0)的图象.画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.3.二次函数y=ax2(a≠0)的图象的性质二次函数y=ax2(a≠0)的图象的性质,见下表:函数图象开口方向顶点坐标对称轴函数变化最大(小)值y=ax2a>0向上(0,0)y轴x>0时,y随x增大而增大;x<0时,y随x增大而减小.当x=0时,y最小=0小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comy=ax2a<0向下(0,0)y轴x>0时,y随x增大而减小;x<0时,y随x增大而增大.当x=0时,y最大=0要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.│a│相同,抛物线的开口大小、形状相同.│a│越大,开口越小,图象两边越靠近y轴,│a│越小,开口越大,图象两边越靠近x轴.要点三、二次函数y=ax2+c(a≠0)的图象及性质1.二次函数y=ax2+c(a≠0)的图象(1)0a(2)0a2.二次函数y=ax2+c(a≠0)的图象的性质关于二次函数2(0)yaxca的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:函数2(0,0)yaxcac2(0,0)yaxcacjjjj小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com图象开口方向向上向下顶点坐标(0,c)(0,c)对称轴y...