小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考点巩固卷23排列组合及二项式定理(七大考点)考点01:排列数及组合数的运算1.排列的定义:一般地,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.要点诠释:(1)排列的定义中包括两个基本内容,一是“取出元素”,二是“按照一定的顺序排列”.(2)从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列.(3)如何判断一个具体问题是不是排列问题,就要看从n个不同元素中取出m个元素后,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com再安排这m个元素时是有顺序还是无顺序,有顺序就是排列,无顺序就不是排列.2、排列数1.排列数的定义从n个不同元素中,任取m(mn)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示.要点诠释:“排列”和“排列数”是两个不同的概念,一个排列是指“从n个不同的元素中,任取m(m≤n)个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一个排列(也就是具体的一件事);2.排列数公式A(1)(2)(1)mnnnnnm,其中n,m∈N+,且m≤n.要点诠释:公式特征:第一个因数是n,后面每一个因数比它前面一个少1,最后一个因数是1nm,共有m个因数。3:阶乘表示式1.阶乘的概念:把正整数1到n的连乘积,叫做n的阶乘.表示:!n,即nnA!n.规定:0!1.2.排列数公式的阶乘式:(1)(2)(1)()21!A(1)(2)(1)()21()!mnnnnnmnmnnnnnmnmnm所以!A()!mnnnm.组合数公式:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)(-1)(-2)(-1)!mmnnmmAnnnnmCmA(m、Nn,且nm)(2)!!(-)!mnnCmnm(m、Nn,且nm)1.设,,则中前的系数为()A.B.C.D.【答案】D【分析】依题意,写出的展开式,利用二项式通项,写出展开式中前的系数,利用组合数的性质计算即得.【详解】依题意,,对于的通项为,故中前的系数为:.故选:D.2.若,则的个位数字是()A.3B.8C.0D.5【答案】A【分析】通过发现当时,可知个位数为0,再求出即可判断.【详解】当时,,当时,的个位数字为0,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又,的个位数字为3.故选:A.3.()A.24B.60C.48D.72【答案】A【分析】根据组合数以及排列数的计算即可求解.【详解】,故选:A4.的值是()A.480B.520C.600D.1320【答案】C【分析】根据排列数公式计算即可.【详解】.故选:C.5.已知,,,则()A.B.C.D.【答案】C【分析】先借助排列数的定义与指数定义得到与的关系后,借助组合数定义结合放缩可比较与的关系,即可得解.【详解】,,均由20个数相乘组成,其中前两项和最后一项比较,其他项,直到,故,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com其中里面前四项大于中的后五项,即,其他项均要对应大于或等于剩余中的每一项,故.故选:C.6.不等式的解集是()A.B.C.D.【答案】A【分析】利用排列数公式化简并求解不等式.【详解】不等式中,,化为,整理得,解得,因此,所以不等式的解集是.故选:A7.,,则等于()A.B.C.D.【答案】A【分析】根据给定条件利用排列数公式的意义即可得解.【详解】因且,表示80个连续正整数的乘积,其中最大因数为,最小因数为,由排列数公式的意义得结果为,所以.故选:A8.表示为()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】B【分析】由排列数公式求解.【详解】由排列数公式可得:.故选:B.9.若,则()A.5B.20C.60D.120【答案】D【分析】直接利用组合数与排列数的计算方法计算即可.【详解】因为,由组合数的性质可得,解得,故.故选:D.10.已知,则()A.11B.10C.9D.8【答案】B【分析】根据组合数的性质计算可得.【详解】因为,所以,又,所以,所以,...