小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025高考--圆锥曲线的方程(一轮复习)课时五知识点一根据椭圆过的点求标准方程,椭圆中的直线过定点问题典例1、已知椭圆过点,离心率为,过点作斜率为,的直线,,它们与椭圆的另一交点分别为,,且.(1)求椭圆的方程;(2)证明:直线过定点.随堂练习:已知椭圆的离心率,上顶点是,左右焦点分别是、,,若椭圆经过点.(1)求椭圆的方程;(2)点和是椭圆上的两个动点,点,,不共线,直线和的斜率分别是和,若,求证直线经过定点,并求出该定点的坐标.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例2、已知椭圆过点,且离心率为.(1)求椭圆的标准方程;(2)当椭圆和圆:.过点作直线和,且两直线的斜率之积等于,与圆相切于点,与椭圆相交于不同的两点,.(i)求的取值范围;(ii)求面积的最大值.随堂练习:已知椭圆的左,右顶点分别为A,B,直线交椭圆C于P,Q两点,直线与x轴不平行,记直线的斜率为,直线的斜率为,已知.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求证:直线恒过定点;(2)设和的面积分别为,求的最大值.典例3、在平面直角坐标系中,已知点,,过点的动直线与过点的动直线的交点为P,,的斜率均存在且乘积为,设动点Р的轨迹为曲线C.(1)求曲线C的方程;(2)若点M在曲线C上,过点M且垂直于OM的直线交C于另一点N,点M关于原点O的对称点为Q.直线NQ交x轴于点T,求的最大值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:对于椭圆,有如下性质:若点是椭圆外一点,,是椭圆的两条切线,则切点A,B所在直线的方程是,可利用此结论解答下列问题.已知椭圆C:和点,过点P作椭圆C的两条切线,切点是A,B,记点A,B到直线(O是坐标原点)的距离是,.(1)当时,求线段的长;(2)求的最大值.知识点二根据焦点或准线写出抛物线的标准方程,抛物线中的三角形或四边形面积问题典例4、已知动点到定点的距离比到直线的距离小2,设动点的轨迹为曲线.(1)求曲线的方程;(2)设是轴上的点,曲线与直线交于,且的面积为,求点的坐标.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:已知动点M到点的距离等于它到直线的距离,记动点M的轨迹为曲线C.(1)求动点M的轨迹方程C;(2)已知,过点的直线l斜率存在且不为0,若l与曲线C有且只有一个公共点P,求的面积.典例5、已知抛物线的焦点为F,过F的直线l交C于A,B两点.(1)当l的倾斜角为时,若,求;(2)设点,且,求l的方程.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:已知抛物线的焦点为,直线过点,且与抛物线交于、两点,.(1)求的取值范围;(2)若,点的坐标为,直线与抛物线的另一个交点为,直线与抛物线的另一个交点为,直线与轴交于点,求的取值范围.典例6、已知P为抛物线E:上任意一点,过点P作轴,垂足为O,点在抛小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com物线上方(如图所示),且的最小值为9.(1)求E的方程;(2)若直线与抛物线E相交于不同的两点A,B,线段AB的垂直平分线交x轴于点N,且为等边三角形,求m的值.随堂练习:已知抛物线C:上的点到其焦点F的距离为2.(1)求抛物线C的方程;(2)已知点D在直线l:上,过点D作抛物线C的两条切线,切点分别为A,B,直线AB与直线l交于点M,过抛物线C的焦点F作直线AB的垂线交直线l于点N,当|MN|最小时,求的值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025高考--圆锥曲线的方程(一轮复习)课时五答案典例1、答案:(1);(2)证明见解析.解:(1)由于,故,所以.又椭圆过点,故,从而,,椭圆的标准方程为.(2)当直线的斜率不存在时,,不合题意,舍去.当直线的斜率存在时,设直线的方程为,由得,设,则.又由得:,所以,化简得,解得或(舍去).当时,直线过定点,符合要求.综上可知,直线过定点.随堂练习:答...