小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025高考--圆锥曲线的方程(一轮复习)课时一知识点一求椭圆中的最值问题典例1、如图,椭圆的左、右焦点为,过的直线与椭圆相交于、两点.(1)若,且求椭圆的离心率.(2)若,求的最大值和最小值.随堂练习:已知椭圆的左、右焦点分别为,椭圆E的离心率为,且通径长为1.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当时,求四边形面积的最大值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例2、已知焦点在x轴的椭圆C:离心率e=,A是左顶点,E(2,0)(1)求椭圆C的标准方程:(2)若斜率不为0的直线l过点E,且与椭圆C相交于点P,Q两点,求三角形APQ面积的最大值随堂练习:已知椭圆的中心在原点,焦点,且经过点.(1)求椭圆的方程;(2)若椭圆上有一点P,另一焦点,求的面积的最大值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例3、椭圆的中心在坐标原点,焦点在坐标轴上,过的长轴,短轴端点的一条直线方程是.(1)求椭圆的方程;(2)过点作直线交椭圆于,两点,若点关于轴的对称点为,证明直线过定点.随堂练习:已知椭圆经过点和点.(1求椭圆的标准方程和离心率;(2)若、为椭圆上异于点的两点,且点在以为直径的圆上,求证:直线恒过定点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com知识点二求双曲线中三角形(四边形)的面积问题,根据韦达定理求参数典例4、已知双曲线的左、右焦点分别为、,双曲线的右顶点在圆上,且.(1)求双曲线的方程;(2)动直线与双曲线恰有1个公共点,且与双曲线的两条渐近线分别交于点、,设为坐标原点.求证:的面积为定值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:已知双曲线C:的离心率为,焦点到其渐近线的距离为1.(1)求双曲线C的标准方程;(2)已知直线l:与双曲线C交于A,B两点,O为坐标原点,直线OA,OB的斜率之积为,求△OAB的面积.典例5、已知双曲线W:的左、右焦点分别为、,点,右顶点是M,且,.(1)求双曲线的方程;(2)过点的直线l交双曲线W的右支于A、B两个不同的点(B在A、Q之间),若点在以线段AB为直径的圆的外部,试求△AQH与△BQH面积之比λ的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:在一张纸上有一圆:,定点,折叠纸片使圆C上某一点恰好与点M重合,这样每次折叠都会留下一条直线折痕PQ,设折痕PQ与直线的交点为T.(1)求证:为定值,并求出点的轨迹方程;(2)曲线上一点P,点A、B分别为直线:在第一象限上的点与:在第四象限上的点,若,,求面积的取值范围.典例6、已知双曲线与双曲线的渐近线相同,且经过点.(1)求双曲线的方程;(2)已知双曲线的左右焦点分别为,,直线经过,斜率为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com与双曲线交于A,两点,求的值.随堂练习:已知双曲线C的渐近线方程为,右焦点到渐近线的距离为.(1)求双曲线C的方程;(2)过F作斜率为k的直线交双曲线于A、B两点,线段AB的中垂线交x轴于D,求证:为定值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025高考--圆锥曲线的方程(一轮复习)课时一答案典例1、答案:(1);(2)最大值;最小值.解:(1),因为。所以,所以,所以(2)由于,得,则.①若垂直于轴,则,所以,所以②若与轴不垂直,设直线的斜率为,则直线的方程为由得,方程有两个不等的实数根.设,.,=,所以当直线垂于轴时,取得最大值小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当直线与轴重合时,取得最小值随堂练习:答案:(1);(2)2.解:(1)依题意可知,解得故椭圆的方程为.(2)延长交E于点,由(1)可知,设,设的方程为,由得,故.设与的距离为d,则四边形的面积为S,,又因为,当且仅当,即时,等号成立,故四边形面积的最大值为2.典例2、答案...