2025年新高考数学复习资料圆锥曲线的方程(一)讲义——2025届高三数学专项复习(含答案).docx本文件免费下载 【共17页】

2025年新高考数学复习资料圆锥曲线的方程(一)讲义——2025届高三数学专项复习(含答案).docx
2025年新高考数学复习资料圆锥曲线的方程(一)讲义——2025届高三数学专项复习(含答案).docx
2025年新高考数学复习资料圆锥曲线的方程(一)讲义——2025届高三数学专项复习(含答案).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025高考--圆锥曲线的方程(一轮复习)课时一知识点一求椭圆中的最值问题典例1、如图,椭圆的左、右焦点为,过的直线与椭圆相交于、两点.(1)若,且求椭圆的离心率.(2)若,求的最大值和最小值.随堂练习:已知椭圆的左、右焦点分别为,椭圆E的离心率为,且通径长为1.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当时,求四边形面积的最大值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例2、已知焦点在x轴的椭圆C:离心率e=,A是左顶点,E(2,0)(1)求椭圆C的标准方程:(2)若斜率不为0的直线l过点E,且与椭圆C相交于点P,Q两点,求三角形APQ面积的最大值随堂练习:已知椭圆的中心在原点,焦点,且经过点.(1)求椭圆的方程;(2)若椭圆上有一点P,另一焦点,求的面积的最大值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例3、椭圆的中心在坐标原点,焦点在坐标轴上,过的长轴,短轴端点的一条直线方程是.(1)求椭圆的方程;(2)过点作直线交椭圆于,两点,若点关于轴的对称点为,证明直线过定点.随堂练习:已知椭圆经过点和点.(1求椭圆的标准方程和离心率;(2)若、为椭圆上异于点的两点,且点在以为直径的圆上,求证:直线恒过定点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com知识点二求双曲线中三角形(四边形)的面积问题,根据韦达定理求参数典例4、已知双曲线的左、右焦点分别为、,双曲线的右顶点在圆上,且.(1)求双曲线的方程;(2)动直线与双曲线恰有1个公共点,且与双曲线的两条渐近线分别交于点、,设为坐标原点.求证:的面积为定值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:已知双曲线C:的离心率为,焦点到其渐近线的距离为1.(1)求双曲线C的标准方程;(2)已知直线l:与双曲线C交于A,B两点,O为坐标原点,直线OA,OB的斜率之积为,求△OAB的面积.典例5、已知双曲线W:的左、右焦点分别为、,点,右顶点是M,且,.(1)求双曲线的方程;(2)过点的直线l交双曲线W的右支于A、B两个不同的点(B在A、Q之间),若点在以线段AB为直径的圆的外部,试求△AQH与△BQH面积之比λ的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:在一张纸上有一圆:,定点,折叠纸片使圆C上某一点恰好与点M重合,这样每次折叠都会留下一条直线折痕PQ,设折痕PQ与直线的交点为T.(1)求证:为定值,并求出点的轨迹方程;(2)曲线上一点P,点A、B分别为直线:在第一象限上的点与:在第四象限上的点,若,,求面积的取值范围.典例6、已知双曲线与双曲线的渐近线相同,且经过点.(1)求双曲线的方程;(2)已知双曲线的左右焦点分别为,,直线经过,斜率为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com与双曲线交于A,两点,求的值.随堂练习:已知双曲线C的渐近线方程为,右焦点到渐近线的距离为.(1)求双曲线C的方程;(2)过F作斜率为k的直线交双曲线于A、B两点,线段AB的中垂线交x轴于D,求证:为定值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025高考--圆锥曲线的方程(一轮复习)课时一答案典例1、答案:(1);(2)最大值;最小值.解:(1),因为。所以,所以,所以(2)由于,得,则.①若垂直于轴,则,所以,所以②若与轴不垂直,设直线的斜率为,则直线的方程为由得,方程有两个不等的实数根.设,.,=,所以当直线垂于轴时,取得最大值小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当直线与轴重合时,取得最小值随堂练习:答案:(1);(2)2.解:(1)依题意可知,解得故椭圆的方程为.(2)延长交E于点,由(1)可知,设,设的方程为,由得,故.设与的距离为d,则四边形的面积为S,,又因为,当且仅当,即时,等号成立,故四边形面积的最大值为2.典例2、答案...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年高考数学试卷(理)(江西)(解析卷).doc
2014年高考数学试卷(理)(江西)(解析卷).doc
免费
0下载
2013年高考真题数学【理】(山东卷)(原卷版).doc
2013年高考真题数学【理】(山东卷)(原卷版).doc
免费
13下载
2024年新高考数学复习资料专题02 利用导函数研究函数的单调性问题(常规问题)(典型题型归类训练) (解析版).docx
2024年新高考数学复习资料专题02 利用导函数研究函数的单调性问题(常规问题)(典型题型归类训练) (解析版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题15 已知核心方程(显性)之直线过定点模型 (教师版).docx
高中数学高考数学10大专题技巧--专题15 已知核心方程(显性)之直线过定点模型 (教师版).docx
免费
0下载
2024版《微专题》·数学(文)·统考版专练 38.docx
2024版《微专题》·数学(文)·统考版专练 38.docx
免费
12下载
2024年高考数学试卷(理)(全国甲卷)(解析卷).docx
2024年高考数学试卷(理)(全国甲卷)(解析卷).docx
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练68.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练68.docx
免费
5下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
2022年高考数学试卷(浙江)(空白卷).pdf
2022年高考数学试卷(浙江)(空白卷).pdf
免费
0下载
专题08 立体几何(四大题型,16区二模新题速递)(解析版)-【好题汇编】2024年高考数学二模试题分类汇编(上海专用).docx
专题08 立体几何(四大题型,16区二模新题速递)(解析版)-【好题汇编】2024年高考数学二模试题分类汇编(上海专用).docx
免费
0下载
2009年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (7).pdf
2009年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (7).pdf
免费
0下载
高中数学·必修第二册(RJ-B)课时作业(word)  课时作业  7.docx
高中数学·必修第二册(RJ-B)课时作业(word) 课时作业 7.docx
免费
7下载
2024年高考押题预测卷数学(全国卷理科01)(参考答案).docx
2024年高考押题预测卷数学(全国卷理科01)(参考答案).docx
免费
12下载
2020年高考数学试卷(理)(新课标Ⅱ)(解析卷) (9).pdf
2020年高考数学试卷(理)(新课标Ⅱ)(解析卷) (9).pdf
免费
0下载
上海市静安区2020年高三第一学期期末(一模)学科质量检测数学试卷(word解析版).docx
上海市静安区2020年高三第一学期期末(一模)学科质量检测数学试卷(word解析版).docx
免费
0下载
2025年新高考数学复习资料考点12对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
2025年新高考数学复习资料考点12对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
免费
0下载
高中数学·必修第二册·湘教版课时作业WORD  课时作业(五十二).docx
高中数学·必修第二册·湘教版课时作业WORD 课时作业(五十二).docx
免费
11下载
2022·微专题·小练习·数学·文科【统考版】专练43.docx
2022·微专题·小练习·数学·文科【统考版】专练43.docx
免费
15下载
二轮专项分层特训卷··高三数学·文科热点(五) 基本不等式.doc
二轮专项分层特训卷··高三数学·文科热点(五) 基本不等式.doc
免费
7下载
上海市各区高三数学一模模块汇编矩阵,行列式汇编--教师版.docx
上海市各区高三数学一模模块汇编矩阵,行列式汇编--教师版.docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群