2025年新高考数学复习资料特训06 利用导数解决零点、交点、方程根等问题(三大题型)(原卷版).docx本文件免费下载 【共8页】

2025年新高考数学复习资料特训06 利用导数解决零点、交点、方程根等问题(三大题型)(原卷版).docx
2025年新高考数学复习资料特训06 利用导数解决零点、交点、方程根等问题(三大题型)(原卷版).docx
2025年新高考数学复习资料特训06 利用导数解决零点、交点、方程根等问题(三大题型)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com特训06利用导数解决零点、交点、方程根等问题(三大题型)方法技巧1隐零点问题在求解函数问题时,很多时候都需要求函数f(x)在区间I上的零点,但所述情形都难以求出其准确值,导致解题过程无法继续进行时,可这样尝试求解:先证明函数f(x)在区间I上存在唯一的零点(例如,函数f(x)在区间I上是单调函数且在区间I的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x0.因为x0不易求出(当然,有时是可以求出但无需求出),所以把零点x0叫做隐零点;若x0容易求出,就叫做显零点,而后解答就可继续进行,实际上,此解法类似于解析几何中设而不求的方法“”.方法技巧2极限思想在解决零点问题中的应用解决函数的零点问题,往往要转化为函数的图象与x轴的交点问题,故需判断函数图象的变化趋势,极限的思想方法是解决问题的有力工具.目录:01:判断、证明或讨论零点的个数02:根据零点情况求参数范围03:与函数零点相关的综合问题01:判断、证明或讨论零点的个数例1已知函数f(x)=xsinx-.判断函数f(x)在(0,π)内的零点个数,并加以证明.感悟提升利用导数求函数的零点常用方法(1)构造函数g(x),利用导数研究g(x)的性质,结合g(x)的图象,判断函数零点的个数.(2)利用零点存在定理,先判断函数在某区间有零点,再结合图象与性质确定函数有多少个零点.训练1已知函数f(x)=x3-a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.02:根据零点情况求参数范围例2已知函数f(x)=2lnx-x2+ax(a∈R).(1)当a=2时,求f(x)的图象在x=1处的切线方程;(2)若函数g(x)=f(x)-ax+m在上有两个零点,求实数m的取值范围.感悟提升1.函数零点个数可转化为两个函数图象的交点个数,根据图象的几何直观求解.2.与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点判断函数的大致图象,进而求出参数的取值范围.也可分离出参数,转化为两函数图象的交点情况.训练2已知函数f(x)=ex+(a-e)x-ax2.(1)当a=0时,求函数f(x)的极值;(2)若函数f(x)在区间(0,1)内存在零点,求实数a的取值范围.03:与函数零点相关的综合问题例3设函数f(x)=e2x-alnx.(1)讨论f(x)的导函数f′(x)零点的个数;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)证明:当a>0时,f(x)≥2a+aln.感悟提升1.在(1)问中,当a>0时,f′(x)在(0,+∞)上单调递增,从而f′(x)在(0,+∞)上至多有一个零点,问题的关键是找到b,使f′(b)<0.2.由(1)问知,函数f′(x)存在唯一零点x0,则f(x0)为函数的最小值,从而把问题转化为证明f(x0)≥2a+aln.训练3设函数f(x)=x3+bx+c,曲线y=f(x)在点处的切线与y轴垂直.(1)求b;(2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不大于1.方法技巧1隐零点问题在求解函数问题时,很多时候都需要求函数f(x)在区间I上的零点,但所述情形都难以求出其准确值,导致解题过程无法继续进行时,可这样尝试求解:先证明函数f(x)在区间I上存在唯一的零点(例如,函数f(x)在区间I上是单调函数且在区间I的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x0.因为x0不易求出(当然,有时是可以求出但无需求出),所以把零点x0叫做隐零点;若x0容易求出,就叫做显零点,而后解答就可继续进行,实际上,此解法类似于解析几何中设而不求的方法“”.例设函数f(x)=ex-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)·f′(x)+x+1>0,求k的最大值.方法技巧2极限思想在解决零点问题中的应用解决函数的零点问题,往往要转化为函数的图象与x轴的交点问题,故需判断函数图象的变化趋势,极限的思想方法是解决问题的有力工具.例(1)已知函数f(x)=ax-x2(a>1)有三个不同的零点,求实数a的取值范围.(2)已知函数f(x)=ex(x+1),若函数g(x)=f(x)-3ex-m有两个零点,求实数m的取值范围.、解题一答1.(2024·北京顺义·三模)已知函数.(1)求曲线在点处的切线方程;(2)当时,求证:函数存在极小值;(...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年高考数学试卷(理)(江西)(解析卷).doc
2014年高考数学试卷(理)(江西)(解析卷).doc
免费
0下载
2013年高考真题数学【理】(山东卷)(原卷版).doc
2013年高考真题数学【理】(山东卷)(原卷版).doc
免费
13下载
2024年新高考数学复习资料专题02 利用导函数研究函数的单调性问题(常规问题)(典型题型归类训练) (解析版).docx
2024年新高考数学复习资料专题02 利用导函数研究函数的单调性问题(常规问题)(典型题型归类训练) (解析版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题15 已知核心方程(显性)之直线过定点模型 (教师版).docx
高中数学高考数学10大专题技巧--专题15 已知核心方程(显性)之直线过定点模型 (教师版).docx
免费
0下载
2024版《微专题》·数学(文)·统考版专练 38.docx
2024版《微专题》·数学(文)·统考版专练 38.docx
免费
12下载
2024年高考数学试卷(理)(全国甲卷)(解析卷).docx
2024年高考数学试卷(理)(全国甲卷)(解析卷).docx
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练68.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练68.docx
免费
5下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
2022年高考数学试卷(浙江)(空白卷).pdf
2022年高考数学试卷(浙江)(空白卷).pdf
免费
0下载
专题08 立体几何(四大题型,16区二模新题速递)(解析版)-【好题汇编】2024年高考数学二模试题分类汇编(上海专用).docx
专题08 立体几何(四大题型,16区二模新题速递)(解析版)-【好题汇编】2024年高考数学二模试题分类汇编(上海专用).docx
免费
0下载
2009年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (7).pdf
2009年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (7).pdf
免费
0下载
高中数学·必修第二册(RJ-B)课时作业(word)  课时作业  7.docx
高中数学·必修第二册(RJ-B)课时作业(word) 课时作业 7.docx
免费
7下载
2024年高考押题预测卷数学(全国卷理科01)(参考答案).docx
2024年高考押题预测卷数学(全国卷理科01)(参考答案).docx
免费
12下载
2020年高考数学试卷(理)(新课标Ⅱ)(解析卷) (9).pdf
2020年高考数学试卷(理)(新课标Ⅱ)(解析卷) (9).pdf
免费
0下载
上海市静安区2020年高三第一学期期末(一模)学科质量检测数学试卷(word解析版).docx
上海市静安区2020年高三第一学期期末(一模)学科质量检测数学试卷(word解析版).docx
免费
0下载
2025年新高考数学复习资料考点12对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
2025年新高考数学复习资料考点12对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
免费
0下载
高中数学·必修第二册·湘教版课时作业WORD  课时作业(五十二).docx
高中数学·必修第二册·湘教版课时作业WORD 课时作业(五十二).docx
免费
11下载
2022·微专题·小练习·数学·文科【统考版】专练43.docx
2022·微专题·小练习·数学·文科【统考版】专练43.docx
免费
15下载
二轮专项分层特训卷··高三数学·文科热点(五) 基本不等式.doc
二轮专项分层特训卷··高三数学·文科热点(五) 基本不等式.doc
免费
7下载
上海市各区高三数学一模模块汇编矩阵,行列式汇编--教师版.docx
上海市各区高三数学一模模块汇编矩阵,行列式汇编--教师版.docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群