2024年新高考数学复习资料大题02 数列(6大题型)(解析版).docx本文件免费下载 【共37页】

2024年新高考数学复习资料大题02 数列(6大题型)(解析版).docx
2024年新高考数学复习资料大题02 数列(6大题型)(解析版).docx
2024年新高考数学复习资料大题02 数列(6大题型)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com大题02数列数列是高考数学的热门考点之一,其中等差(比)数列的通项公式,前n项和公式,以递堆数列为命题背景考查等差(比)数列的证明方法,以及等差(比)数列有关的错位相减法和裂项相消法求和是考查的重点内容。有时也会结合不等式进行综合考查,此时难度较大。题型一:等差数列与等比数列证明(2024·云南楚雄·高三统考期末)已知数列满足,.(1)求,;(2)求,并判断是否为等比数列.【答案】(1);(2),是等比数列【思路分析】(1)分别令,,计算可得所求值;(2)利用累加法,结合等差数列、等比数列的求和公式,可求数列的通项公式,可得,得解.【规范解答】(1),(2)因为,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,,…,,将以上各式相加得.因为,所以,又也满足,所以,所以,所以是等比数列,且首项、公比均为2.判断数列是否为等差货等比数列的策略1、将所给的关系进行变形、转化,以便利用等差数列和等比数列的概念进行判断;2、若要判断一个不是等差(等比)数列,则只需说明某连续三项(如前三项)不是等差(等比)数列即可。1.(2022·全国·高三专题练习)记数列的前项积为,且,其中.(1)若,求的值;(2)求证:数列是等比数列.【答案】(1);(2)证明见解析【分析】(1)在中令,得成等比数列,结合即可得解.(2)由等比数列定义结合已知即可得证.【解析】(1)令,则,即,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com成等比数列,则公比为.,即.(2),两式相除得,即①,由①得②,②÷①得,即,即,由(1)知,数列是等比数列.2.(2022·河南·高三校联考专题练习)已知数列的前项和为,且,(1)求证:数列是等差数列;(2)求数列的通项公式.【答案】(1)证明见解析;(2).【分析】(1)借助与的关系消去后化简可得,即可得证;(2)计算出后再次借助与的关系计算即可得数列的通项公式.【解析】(1)由已知,令,解得,又,则,则,则,则,则,即,又,故是以为首项,为公差的等差数列;(2)由(1)可知,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故,则,由(1)可知,,当时,,综上,可得.题型二:分组转化法求数列的前n项和(2024·贵州贵阳·贵阳一中校考一模)已知数列的前项和为,且,.(1)求数列的通项公式;(2)在数列中,,求数列的前项和.【思路分析】(1)根据求解即可;(2)利用分组求和法求解即可.【规范解答】(1)由,当时,,所以,当时,,即,所以数列是从第二项开始以为公比的等比数列,所以;(2)当时,,此时当时,,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com此时,当时,,上式成立,所以.1、适用范围:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.2、常见类型:(1)分组转化法:若an=bn±cn,且{bn},{cn}为等差或等比数列:(2)奇偶并项求和:通项公式为an=的数列,其中数列{bn},{cn}是等比数列或等差数列。1.(2024·黑龙江·高三大庆实验中学校联考阶段练习)已知数列的前项和为,满足,.(1)若数列满足,求的通项公式;(2)求数列的通项公式,并求.【答案】(1);(2),【分析】(1)根据数列的递推公式推导出数列为等比数列,确定该数列的首项和公比,即可求得数列的通项公式;(2)求出数列的通项公式,分为奇数、偶数两种情况讨论,设、,可得出数列的通项公式,分别求出、,相加可得.【解析】(1)因为数列满足,,则,因为,且,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,数列是首项为,公比为的等比数列,所以,,则.(2)由(1)可得,所以,,当为奇数时,设,则,则;当为偶数时,设,则,则.综上所述,.因为,,所以,.2.(2024·湖南·长沙一中校联考模拟预测)已知等差数列的前项和为,且.等比数列是正项递增数列,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群