2024年新高考数学复习资料大题03 立体几何(7大题型)(解析版).docx本文件免费下载 【共58页】

2024年新高考数学复习资料大题03 立体几何(7大题型)(解析版).docx
2024年新高考数学复习资料大题03 立体几何(7大题型)(解析版).docx
2024年新高考数学复习资料大题03 立体几何(7大题型)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com大题03立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。考题难度中等,常结合空间向量知识进行考查。2024年高考有很大可能延续往年的出题方式。题型一:空间异面直线夹角的求解(2023·上海长宁·统考一模)如图,在三棱锥中,平面平面为的中点.(1)求证:;(2)若,求异面直线与所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取的中点,利用几何法求出异面直线与所成的角.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【规范解答】(1)在三棱锥中,由为的中点,得,而平面平面,平面平面,平面,因此平面,又平面,所以.(2)分别取的中点,连接,于是,则是异面直线与所成的角或其补角,由(1)知,,又,,则,于是,令,则,又,则有,,又平面,平面,则,,,由分别为的中点,得,显然,即有,,则,所以异面直线与所成的角的大小.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(4)取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若分别为直线的方向向量,为直线的夹角,则.1.(2023·江西萍乡·高三统考期中)如图,在正四棱台中,分别是的中点.(1)证明:平面;(2)若,且正四棱台的侧面积为9,其内切球半径为,为的中心,求异面直线与所成角的余弦值.【答案】(1)证明见解析;(2)【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取中点,连接,如下图:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com在梯形中,分别为的中点,则,同理可得,因为平面,平面,所以平面,同理可得平面,因为,平面,所以平面平面,又因为平面,所以平面;(2)连接,则,连接,在平面中,作交于,在平面中,作交于,连接,如下图:因为,则,且,所以为平行四边形,则,且,所以为异面直线与所成角或其补角,同理可得:为平行四边形,则,在正四棱台中,易知对角面底面,因为平面平面,且,平面,所以平面,由内切球的半径为,则,在等腰梯形中,且,易知,同理可得,在中,,则,设正方形的边长为,则正方形A1B1C1D1的边长为,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由正四棱台的侧面积为,则等腰梯形的面积,因为平面,平面,所以,在,,可得,则,解得,所以,,,,则,在中,,则,所以在中,则,所以异面直线与所成角的余弦值为.2.(2023·辽宁丹东·统考二模)如图,平行六面体的所有棱长都相等,平面平面ABCD,AD⊥DC,二面角的大小为120°,E为棱的中点.(1)证明:CD⊥AE;(2)点F在棱CC1上,平面BDF,求直线AE与DF所成角的余弦值.【答案】(1)证明见解析;(2)【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面平面,且两平面交线为,,平面所以平面,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,是二面角的平面角,故....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群