2024年新高考数学复习资料专题07 解三角形-(解析版).docx本文件免费下载 【共41页】

2024年新高考数学复习资料专题07 解三角形-(解析版).docx
2024年新高考数学复习资料专题07 解三角形-(解析版).docx
2024年新高考数学复习资料专题07 解三角形-(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2023年高考数学真题题源解密(全国卷)专题07解三角形目录一览①2023真题展现考向一正弦(余弦)定理解三角形考向二解三角形面积②真题考查解读③近年真题对比考向一正弦(余弦)定理解三角形考向二解三角形面积考向三解三角形的实际应用④命题规律解密⑤名校模拟探源⑥易错易混速记考向一正弦(余弦)定理解三角形一、单选题1.(2023·全国乙卷文数第4题)在中,内角的对边分别是,若,且,则()A.B.C.D.【答案】C【详解】由题意结合正弦定理可得,即,整理可得,由于,故,据此可得,则.故选:C.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com二、填空题1.(2023·全国甲卷理数第16题)在中,,的角平分线交BC于D,则.【答案】【详解】如图所示:记,方法一:由余弦定理可得,,因为,解得:,由可得,,解得:.故答案为:.方法二:由余弦定理可得,,因为,解得:,由正弦定理可得,,解得:,,因为,所以,,又,所以,即.故答案为:.考向二解三角形面积一、解答题1.(2023·全国乙卷理数第18题)在中,已知,,.(1)求;(2)若D为BC上一点,且,求的面积.【答案】(1);(2).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】(1)由余弦定理可得:,则,,.(2)由三角形面积公式可得,则.2.(2023·全国甲卷文数第17题)记的内角的对边分别为,已知.(1)求;(2)若,求面积.【答案】(1)(2)【详解】(1)因为,所以,解得:.(2)由正弦定理可得,变形可得:,即,而,所以,又,所以,故的面积为.【命题意图】1.正弦定理和余弦定理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.【考查要点】解三角形,多以一个三角形为背景,也可能会以四边形为背景,考查利用正弦能理、余弦定理解三角形.【得分要点】高频考点:正弦定理、余弦定理、解三角形面积中频考点:解三角形的实际应用考向一正弦(余弦)定理解三角形一、单选题1.(2021·全国甲卷文数第8题)在中,已知,,,则()A.1B.C.D.3【答案】D【详解】设,结合余弦定理:可得:,即:,解得:(舍去),故.故选:D.二、填空题1.(2022·全国甲卷理数第16题)已知中,点D在边BC上,.当取得最小值时,.【答案】【详解】[方法一]:余弦定理设,则在中,,在中,,所以,当且仅当即时,等号成立,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以当取最小值时,.故答案为:.[方法二]:建系法令BD=t,以D为原点,OC为x轴,建立平面直角坐标系.则C(2t,0),A(1,),B(-t,0)[方法三]:余弦定理设BD=x,CD=2x.由余弦定理得,,,,令,则,,,当且仅当,即时等号成立.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com[方法四]:判别式法设,则在中,,在中,,所以,记,则由方程有解得:即,解得:所以,此时所以当取最小值时,,即.三、解答题1.(2022·全国乙卷文数第17题)记的内角A,B,C的对边分别为a,b,c﹐已知.(1)若,求C;(2)证明:【答案】(1);(2)证明见解析.【详解】(1)由,可得,,而,所以,即有,而,显然,所以,,而,,所以.(2)由可得,,再由正弦定理可得,,然后根据余弦定理可知,,化简得:,故原等式成立.2.(2022·全国乙卷理数第17题)记的内角的对边分别为,已知小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.(1)证明:;(2)若,求的周长.【答案】(1)见解析(2)14【详解】(1)证明:因为,所以,所以,即,所以;(2)解:因为,由(1)得,由余弦定理可得,则,所以,故,所以,所以的周长为.考向二解三角形面积一、填空题1.(2021·全国乙卷理数第15题)记的内角A,B,C的对边分别为a,b,c,面积为,,,则.【答案】【详解】由题意,,所以,所...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料重难点05 导数常考经典压轴小题全归类【十大题型】(举一反三)(新高考专用)(解析版).docx
2024年新高考数学复习资料重难点05 导数常考经典压轴小题全归类【十大题型】(举一反三)(新高考专用)(解析版).docx
免费
0下载
精品解析:江苏省泰州中学2023届高三下学期一模模拟数学试题(原卷版).docx
精品解析:江苏省泰州中学2023届高三下学期一模模拟数学试题(原卷版).docx
免费
0下载
高考数学专题02 复数(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
高考数学专题02 复数(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(二十三).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(二十三).docx
免费
12下载
2010年高考数学试卷(江苏)(空白卷).pdf
2010年高考数学试卷(江苏)(空白卷).pdf
免费
0下载
2013年高考数学真题(文科)(北京自主命题).doc
2013年高考数学真题(文科)(北京自主命题).doc
免费
30下载
2014年广东高考(文科)数学(原卷版).doc
2014年广东高考(文科)数学(原卷版).doc
免费
24下载
2025年新高考数学复习资料培优点02指、对、幂的大小比较(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
2025年新高考数学复习资料培优点02指、对、幂的大小比较(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
免费
0下载
2024年新高考数学复习资料第21讲 函数y=Asin(ωx+φ)的图象性质及其应用(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第21讲 函数y=Asin(ωx+φ)的图象性质及其应用(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2024年新高考数学复习资料跟踪训练03 等比数列(解析版).docx
2024年新高考数学复习资料跟踪训练03 等比数列(解析版).docx
免费
0下载
2011年高考数学试卷(文)(上海)(空白卷).pdf
2011年高考数学试卷(文)(上海)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题04 灵活运用周期性、单调性、奇偶性、对称性解决函数性质问题(9大核心考点)(讲义)(原卷版).docx
2024年新高考数学复习资料专题04 灵活运用周期性、单调性、奇偶性、对称性解决函数性质问题(9大核心考点)(讲义)(原卷版).docx
免费
0下载
高中2024版《微专题》·数学·新高考专练 32.docx
高中2024版《微专题》·数学·新高考专练 32.docx
免费
0下载
上海市虹口区2023-2024学年高三上学期期终学生学习能力诊断测试数学试卷【答案在文末】.docx
上海市虹口区2023-2024学年高三上学期期终学生学习能力诊断测试数学试卷【答案在文末】.docx
免费
0下载
2014年高考数学真题( 江苏自主命题).doc
2014年高考数学真题( 江苏自主命题).doc
免费
7下载
2018年高考数学试卷(文)(新课标Ⅰ)(空白卷) (8).pdf
2018年高考数学试卷(文)(新课标Ⅰ)(空白卷) (8).pdf
免费
0下载
2022年高考数学试卷(文)(全国甲卷)(空白卷) (5).docx
2022年高考数学试卷(文)(全国甲卷)(空白卷) (5).docx
免费
0下载
2024年新高考数学复习资料跟踪训练01 数列的概念(原卷版).docx
2024年新高考数学复习资料跟踪训练01 数列的概念(原卷版).docx
免费
0下载
2023年高考数学试卷(北京)(解析卷).pdf
2023年高考数学试卷(北京)(解析卷).pdf
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练103.docx
高中2024版考评特训卷·数学【新教材】考点练103.docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群