小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2023年高考数学真题题源解密(全国卷)专题07解三角形目录一览①2023真题展现考向一正弦(余弦)定理解三角形考向二解三角形面积②真题考查解读③近年真题对比考向一正弦(余弦)定理解三角形考向二解三角形面积考向三解三角形的实际应用④命题规律解密⑤名校模拟探源⑥易错易混速记考向一正弦(余弦)定理解三角形一、单选题1.(2023·全国乙卷文数第4题)在中,内角的对边分别是,若,且,则()A.B.C.D.【答案】C【详解】由题意结合正弦定理可得,即,整理可得,由于,故,据此可得,则.故选:C.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com二、填空题1.(2023·全国甲卷理数第16题)在中,,的角平分线交BC于D,则.【答案】【详解】如图所示:记,方法一:由余弦定理可得,,因为,解得:,由可得,,解得:.故答案为:.方法二:由余弦定理可得,,因为,解得:,由正弦定理可得,,解得:,,因为,所以,,又,所以,即.故答案为:.考向二解三角形面积一、解答题1.(2023·全国乙卷理数第18题)在中,已知,,.(1)求;(2)若D为BC上一点,且,求的面积.【答案】(1);(2).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】(1)由余弦定理可得:,则,,.(2)由三角形面积公式可得,则.2.(2023·全国甲卷文数第17题)记的内角的对边分别为,已知.(1)求;(2)若,求面积.【答案】(1)(2)【详解】(1)因为,所以,解得:.(2)由正弦定理可得,变形可得:,即,而,所以,又,所以,故的面积为.【命题意图】1.正弦定理和余弦定理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.【考查要点】解三角形,多以一个三角形为背景,也可能会以四边形为背景,考查利用正弦能理、余弦定理解三角形.【得分要点】高频考点:正弦定理、余弦定理、解三角形面积中频考点:解三角形的实际应用考向一正弦(余弦)定理解三角形一、单选题1.(2021·全国甲卷文数第8题)在中,已知,,,则()A.1B.C.D.3【答案】D【详解】设,结合余弦定理:可得:,即:,解得:(舍去),故.故选:D.二、填空题1.(2022·全国甲卷理数第16题)已知中,点D在边BC上,.当取得最小值时,.【答案】【详解】[方法一]:余弦定理设,则在中,,在中,,所以,当且仅当即时,等号成立,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以当取最小值时,.故答案为:.[方法二]:建系法令BD=t,以D为原点,OC为x轴,建立平面直角坐标系.则C(2t,0),A(1,),B(-t,0)[方法三]:余弦定理设BD=x,CD=2x.由余弦定理得,,,,令,则,,,当且仅当,即时等号成立.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com[方法四]:判别式法设,则在中,,在中,,所以,记,则由方程有解得:即,解得:所以,此时所以当取最小值时,,即.三、解答题1.(2022·全国乙卷文数第17题)记的内角A,B,C的对边分别为a,b,c﹐已知.(1)若,求C;(2)证明:【答案】(1);(2)证明见解析.【详解】(1)由,可得,,而,所以,即有,而,显然,所以,,而,,所以.(2)由可得,,再由正弦定理可得,,然后根据余弦定理可知,,化简得:,故原等式成立.2.(2022·全国乙卷理数第17题)记的内角的对边分别为,已知小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.(1)证明:;(2)若,求的周长.【答案】(1)见解析(2)14【详解】(1)证明:因为,所以,所以,即,所以;(2)解:因为,由(1)得,由余弦定理可得,则,所以,故,所以,所以的周长为.考向二解三角形面积一、填空题1.(2021·全国乙卷理数第15题)记的内角A,B,C的对边分别为a,b,c,面积为,,,则.【答案】【详解】由题意,,所以,所...