1/56专题08外接球与内切球一.外接球8大模型秒杀公式推导1.墙角模型(1)使用范围:3组或3条棱两两垂直;或可在长方体中画出该图且各顶点与长方体的顶点重合(2)推导过程:长方体的体对角线就是外接球的直径(2)秒杀公式:(4)图示过程(3)秒杀公式:技巧导图技巧详讲2/562.汉堡模型(1)使用范围:有一条侧棱垂直与底面的柱体或椎体(2)推导过程第一步:取底面的外心O1,,过外心做高的的平行且长度相等,在该线上中点为球心的位置第二步:根据勾股定理可得(3)秒杀公式:(4)图示过程3.斗笠模型(1)使用范围:正棱锥或顶点的投影在底面的外心上(2)推导过程第一步:取底面的外心O1,,连接顶点与外心,该线为空间几何体的高h第二步:在h上取一点作为球心O第三步:根据勾股定理(3)秒杀公式:(4)图示过程3/564.折叠模型(1)使用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠(2)推导过程第一步:过两个平面取其外心H1、H2,分别过两个外心做这两个面的垂线且垂线相交于球心O第二步:计算第三步:(3)秒杀技巧:(4)图示过程5.切瓜模型(1)使用范围:有两个平面互相垂直的棱锥(2)推导过程:第一步:分别在两个互相垂直的平面上取外心F、N,过两个外心做两个垂面的垂线,两条垂线的交点即为4/56球心O,取BC的中点为M,连接FM、MN、OF、ON第二步:(3)秒杀公式:(4)图示过程6.麻花模型(1)使用范围:对棱相等的三棱锥(2)推导过程:设3组对棱的长度分别为x、y、z,长方体的长宽高分别为a、b、c(3)秒杀公式:(4)图示过程5/567.矩形模型(1)使用范围:棱锥有两个平面为直角三角形且斜边为同一边(2)推导过程:根据球的定义可知一个点到各个顶点的距离相等该点为球心可得,斜边为球的直径(3)秒杀公式:(4)图示过程8.鳄鱼模型(1)使用范围:适用所有的棱锥(2)推导过程:6/56(3)秒杀公式:(4)图示过程7/56二.内切球的半径---等体积法1.推导过程2.秒杀公式:3.图示过程特别说明:下面例题或练习都是常规方法解题,大家可以利用模型的秒杀公式技巧1外接球之墙角模型【例1】(2020·河南高三月考)已知长方体中,,,与平面所成角的正弦值为,则该长方体的外接球的表面积为()例题举证8/56A.B.C.D.【答案】B【解析】作,垂足为,连接,.因为平面平面,平面平面,平面,所以平面,所以是与平面所成的平面角.又,.所以,解得.故该长方体的体对角线为.设长方体的外接球的半径为,则,解得.所以该长方体的外接球的表面积为.故选B.9/56【举一反三】1.(2020·全国高三专题练习)棱长为的正方体的外接球的表面积为()A.B.C.D.【答案】C【解析】因为正方体的外接球的直径为正方体的体对角线的长,所以,解得,所以球的表面积为:.故选:C2.(2019·绥德中学)球面上有四个点,若两两垂直,且,则该球的表面积为()A.B.C.D.【答案】D【解析】由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为,由题意可得:,据此可得:,外接球的表面积为:.本题选择D选项.技巧2外接球之汉堡模型【例2】(2020·四川泸州市·高三)已知四棱锥中,四边形是边长为2的正方形,且平面,则该四棱锥外接球的表面积为()10/56A.B.C.D.【答案】C【解析】由题意,四棱锥中,四边形是边长为2的正方形,且平面,可把四棱锥放置在如图所示的一个长方体内,其中长方体的长、宽、高分别为,则四棱锥的外接球和长方体的外接球表示同一个球,设四棱锥的外接球的半径为,可得,解得,所以该四棱锥外接球的表面积为.故选:C.【举一反三】1.(2020·广州市广外)各顶点都在一个球面上的正四棱柱(底面是正方形,侧棱垂直于底面)高为2,体积为8,则这个球的表面积是()A.B.C.D.11/56【答案】B【解析】因为正四棱柱高为2,体积为8,所以它的底面边长是2,所以它的体对角线的长是,因此它的外接球的直径是,所以这个球的表面积是:.故选:B.2.(2020·辽宁省高三)如图,在三棱锥A﹣BCD中,BD⊥平面ADC,BD=1,AB=2,BC=3,AC=,则三棱锥A﹣BCD外接球的体积为()A.4πB.3πC.2πD.4π【答案】D【解析】因为BD⊥平面ADC,所以,,所以,,所...