小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题37讨论函数零点或方程根的个数问题【方法总结】判断、证明或讨论函数零点个数的方法利用零点存在性定理求解函数热点问题的前提条件为函数图象在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0.①直接法:判断一个零点时,若函数为单调函数,则只需取值证明f(a)·f(b)<0;②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明f(a)·f(b)<0.【例题选讲】[例1]已知f(x)=e-x(ax2+x+1).当a>0时,试讨论方程f(x)=1的解的个数.[破题思路]方程讨论f(x)=1的解的,想到个数f(x)-1的零点,出个数给f(x)的解析式,用f(x)=1造函,化零点求解构数转为问题(或分离,合象求解参数结图).[规范解答]法一:分类讨论法方程f(x)=1的解的个数即为函数h(x)=ex-ax2-x-1(a>0)的零点个数.而h′(x)=ex-2ax-1,设H(x)=ex-2ax-1,则H′(x)=ex-2a.令H′(x)>0,解得x>ln2a;令H′(x)<0,解得x<ln2a,所以h′(x)在(-∞,ln2a)上单调递减,在(ln2a,+∞)上单调递增.所以h′(x)min=h′(ln2a)=2a-2aln2a-1.设m=2a,g(m)=m-mlnm-1(m>0),则g′(m)=1-(1+lnm)=-lnm,令g′(m)<0,得m>1;令g′(m)>0,得0<m<1,所以g(m)在(1,+∞)上单调递减,在(0,1)上单调递增,所以g(m)max=g(1)=0,即h′(x)min≤0(当m=1即a=时取等号).①当a=时,h′(x)min=0,则h′(x)≥0恒成立.所以h(x)在R上单调递增,故此时h(x)只有一个零点.②当a>时,ln2a>0,h′(x)min=h′(ln2a)<0,又h′(x)在(-∞,ln2a)上单调递减,在(ln2a,+∞)上单调递增,又h′(0)=0,则存在x1>0使得h′(x1)=0,这时h(x)在(-∞,0)上单调递增,在(0,x1)上单调递减,在(x1,+∞)上单调递增.所以h(x1)<h(0)=0,又h(0)=0,所以此时h(x)有两个零点.③当0<a<时,ln2a<0,h′(x)min=h′(ln2a)<0,又h′(x)在(-∞,ln2a)上单调递减,在(ln2a,+∞)上单调递增,又h′(0)=0,则存在x2<0使得h′(x2)=0.这时h(x)在(-∞,x2)上单调递增,在(x2,0)上单调递减,在(0,+∞)上单调递增,所以h(x2)>h(0)=0,h(0)=0,所以此时f(x)有两个零点.综上,当a=时,方程f(x)=1只有一个解;当a≠且a>0时,方程f(x)=1有两个解.法二:分离参数法方程f(x)=1的解的个数即方程ex-ax2-x-1=0(a>0)的解的个数,方程可化为ax2=ex-x-1.当x=0时,方程为0=e0-0-1,显然成立,所以x=0为方程的解.当x≠0时,分离参数可得a=(x≠0).设函数p(x)=(x≠0),则p′(x)==.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com记q(x)=ex(x-2)+x+2,则q′(x)=ex(x-1)+1.记t(x)=q′(x)=ex(x-1)+1,则t′(x)=xex.显然当x<0时,t′(x)<0,函数t(x)单调递减;当x>0时,t′(x)>0,函数t(x)单调递增.所以t(x)>t(0)=e0(0-1)+1=0,即q′(x)>0,所以函数q(x)单调递增.而q(0)=e0(0-2)+0+2=0,所以当x<0时,q(x)<0,即p′(x)>0,函数p(x)单调递增;当x>0时,q(x)>0,即p′(x)>0,函数p(x)单调递增.而当x→0时,p(x)→x→0=x→0=x→0=x→0=(洛必达法则),当x→-∞时,p(x)→x→-∞=x→-∞=0,故函数p(x)的图象如图所示.作出直线y=a.显然,当a=时,直线y=a与函数p(x)的图象无交点,即方程ex-ax2-x-1=0只有一个解x=0;当a≠且a>0时,直线y=a与函数p(x)的图象有一个交点(x0,a),即方程ex-ax2-x-1=0有两个解x=0或x=x0.综上,当a=时,方程f(x)=1只有一个解;当a≠且a>0时,方程f(x)=1有两个解.[注]部分题型利用分离法处理时,会出现“”型的代数式,这是大学数学中的不定式问题,解决这类问题有效的方法就是洛必达法则.法则1若函数f(x)和g(x)满足下列条件:(1)limf(x)=0及limg(x)=0;(2)在点a的去心邻域内,f(x)与g(x)可导且g′(x)≠0;(3)lim=l.那么lim=lim=l.法则2若函数f(x)和g(x)满足下列条件:(1)limf(x)=∞及limg(x)=∞;(2)在点a的去心邻域内,f(x)与g(x)可导且g′(x)≠0;(3)lim=l...