高中数学高考数学10大专题技巧--专题十 内切球模型(教师版).docx本文件免费下载 【共6页】

高中数学高考数学10大专题技巧--专题十 内切球模型(教师版).docx
高中数学高考数学10大专题技巧--专题十 内切球模型(教师版).docx
高中数学高考数学10大专题技巧--专题十 内切球模型(教师版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题十内切球模型【方法总结】以三棱锥P-ABC为例,求其内切球的半径.方法:等体积法,三棱锥P-ABC体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r,球心为O,建立等式:VP-ABC=VO-ABC+VO-PAB+VO-PAC+VO-PBC⇒VP-ABC=S△ABC·r+S△PAB·r+S△PAC·r+S△PBC·r=(S△ABC+S△PAB+S△PAC+S△PBC)·r;第三步:解出r==.秒杀公式(万能公式):r=【例题选讲】[例](1)已知一个三棱锥的所有棱长均为,三的切球的体则该棱锥内积为________.答案π解析由意可知,三正四面体,如所示.题该棱锥为图AE=AB·sin60°=,AO=AE=,DO==,三的体棱锥积VDABC=S△ABC·DO=,切球的半设内径为r,则VDABC=r(S△ABC+S△ABD+S△BCD+S△ACD)=,r=,V切球内=πr3=π.(2)(2020·全Ⅲ国)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB,如图所示,则△PAB的内切圆为圆锥的内切球的大圆.在△PAB中,PA=PB=3,D为AB的中点,AB=2,E为切点,则PD=2,△PEO∽△PDB,故=,即=,解得r=,故内切球的体积为π3=π.(3)阿基米德(公元前287年~公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论.要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边.若表面积为54π的圆柱的底面直径与高都等于球的直径,则该球的体积为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.4πB.16πC.36πD.答案C解析设该圆柱的底面半径为R,则圆柱的高为2R,则圆柱的表面积S=S底+S侧=2×πR2+2·π·R·2R=54π,解得R2=9,即R=3.∴圆柱的体积为V=πR2×2R=54π,∴该圆柱的内切球的体积为×54π=36π.故选C.(4)已知三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,且PA=PB=PC=2,则三棱锥P-ABC的外接球与内切球的半径比为________.答案解析以PA,PB,PC为过同一顶点的三条棱,作长方体,由PA=PB=PC=2,可知此长方体即为正方体.设外接球的半径为R,则R==,设内切球的半径为r,则内切球的球心到四个面的距离均为r,由(S△ACP+S△APB+S△PCB+S△ABC)·r=·S△PCB·AP,解得r=,所以==.(5)正四面体的外接球和内切球上各有一个动点P、Q,若线段PQ长度的最大值为463,则这个四面体的棱长为________.答案4解析设这个四面体的棱长为a,则它的外接球与内切球的球心重合,且半径64Ra外,612ra内,依题意得66464123aa,4a.【对点训练】1.若一个正四面体的表面积为S1,其内切球的表面积为S2,则=________.1.答案解析正四面体设棱长为a,正四面体表面则积为S1=4×·a2=a2,其切球半正内径为四面体高的,即r=×a=a,因此切球表面内积为S2=4πr2=,==则.2.已知一个平放的各棱长为4的三棱锥内有一个小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.2.答案C解析注入水的体是三体的当积该棱锥积,水面上方的小三的时设棱锥棱长为x(各都棱长相等),依意,题=,得x=2.易得小三的高棱锥为,小球半设径为r,则S底面·=4··S底面·r,得r=,故小球的表面积S=4πr2=.故选C.3.已知四棱锥P-ABCD的底面ABCD是边长为6的正方形,且PA=PB=PC=PD,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是()A.6B.5C.D.3.答案D解析由题意知,四棱锥P-ABCD是正四棱锥,球的球...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
免费
14下载
高中2022·微专题·小练习·数学【新高考】专练45.docx
高中2022·微专题·小练习·数学【新高考】专练45.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练9.docx
高中2022·微专题·小练习·数学·理科【统考版】专练9.docx
免费
0下载
2009年高考数学试卷(理)(四川)(解析卷).pdf
2009年高考数学试卷(理)(四川)(解析卷).pdf
免费
0下载
上海市普陀区2022年高三第一学期期末(一模)学科质量检测数学试卷(word原卷版).docx
上海市普陀区2022年高三第一学期期末(一模)学科质量检测数学试卷(word原卷版).docx
免费
0下载
2014年上海市浦东新区高考数学一模试卷(文科).doc
2014年上海市浦东新区高考数学一模试卷(文科).doc
免费
0下载
2017年高考数学真题(浙江自主命题).doc
2017年高考数学真题(浙江自主命题).doc
免费
1下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第6讲 椭圆(二)(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第6讲 椭圆(二)(含解析).docx
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点21  概率与统计.docx
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点21  概率与统计.docx
免费
8下载
专题6-数列与极限专题-沪教版高三数学2021-2022一模考试汇编.docx
专题6-数列与极限专题-沪教版高三数学2021-2022一模考试汇编.docx
免费
0下载
2016年上海高考理科数学真题(解析版).docx
2016年上海高考理科数学真题(解析版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练17.docx
高中2024版考评特训卷·数学【新教材】考点练17.docx
免费
0下载
1997年西藏高考文科数学真题及答案.doc
1997年西藏高考文科数学真题及答案.doc
免费
2下载
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word)  课时作业(十三).docx
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word) 课时作业(十三).docx
免费
28下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(三).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(三).docx
免费
0下载
高中2024版《微专题》·数学·新高考专练 15.docx
高中2024版《微专题》·数学·新高考专练 15.docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (9).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (9).pdf
免费
0下载
2007年广东高考文科数学真题及答案.doc
2007年广东高考文科数学真题及答案.doc
免费
29下载
1993年高考数学真题(文科 )(福建自主命题).doc
1993年高考数学真题(文科 )(福建自主命题).doc
免费
15下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群