小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题38由函数零点或方程根的个数求参数范围问题【例题选讲】[例1]已知函数f(x)=x2+-alnx(a∈R).(1)若f(x)在x=2处取得极值,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a>0时,若f(x)有唯一的零点x0,求[x0].注:[x]表示不超过x的最大整数,如[0.6]=0,[2.1]=2,[-1.5]=-2.(参考数据:ln2=0.693,ln3=1.099,ln5=1.609,ln7=1.946)[规范解答](1) f(x)=x2+-alnx,∴f′(x)=(x>0),由题意得f′(2)=0,则2×23-2a-2=0,a=7,经验证,当a=7时,f(x)在x=2处取得极值,∴f(x)=x2+-7lnx,f′(x)=2x--,∴f′(1)=-7,f(1)=3,则曲线y=f(x)在点(1,f(1))处的切线方程为y-3=-7(x-1),即7x+y-10=0.(2)令g(x)=2x3-ax-2(x>0),则g′(x)=6x2-a,由a>0,g′(x)=0,可得x=,∴g(x)在上单调递减,在上单调递增.由于g(0)=-2<0,故当x∈时,g(x)<0,又g(1)=-a<0,故g(x)在(1,+∞)上有唯一零点,设为x1,从而可知f(x)在(0,x1)上单调递减,在(x1,+∞)上单调递增,由于f(x)有唯一零点x0,故x1=x0,且x0>1,则g(x0)=0,f(x0)=0,可得2lnx0--1=0.令h(x)=2lnx--1(x>1),易知h(x)在(1,+∞)上单调递增,由于h(2)=2ln2-<2×0.7-<0,h(3)=2ln3->0,故x0∈(2,3),[x0]=2.[例2]已知函数f(x)=xex-a(x+1)2.(1)若a=e,求函数f(x)的极值;(2)若函数f(x)有两个零点,求实数a的取值范围.[破题思路]第(1)问求f(x)的极值,想到求f′(x)=0的解,然后根据单调性求极值;第(2)问求实数a的取值范围,想到建立关于a的不等式,给出函数f(x)的解析式,并已知f(x)有两个零点,利用f(x)的图象与x轴有两个交点求解.[规范解答](1)由题意知,当a=e时,f(x)=xex-e(x+1)2,函数f(x)的定义域为(-∞,+∞),f′(x)=(x+1)ex-e(x+1)=(x+1)(ex-e).令f′(x)=0,解得x=-1或x=1.当x变化时,f′(x),f(x)的变化情况如下表所示:x(-∞,-1)-1(-1,1)1(1,+∞)f′(x)+0-0+f(x)极大值-极小值-e所以当x=-1时,f(x)取得极大值-;当x=1时,f(x)取得极小值-e.(2)法一:分类讨论法f′(x)=(x+1)ex-a(x+1)=(x+1)(ex-a),若a=0,易知函数f(x)在(-∞,+∞)上只有一个零点,故不符合题意.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com若a<0,当x∈(-∞,-1)时,f′(x)<0,f(x)单调递减;当x∈(-1,+∞)时,f′(x)>0,f(x)单调递增.由f(-1)=-<0,且f(1)=e-2a>0,当x→-∞时,f(x)→+∞,所以函数f(x)在(-∞,+∞)上有两个零点.若lna<-1,即0<a<,当x∈(-∞,lna)∪(-1,+∞)时,f′(x)>0,f(x)单调递增;当x∈(lna,-1)时,f′(x)<0,f(x)单调递减.又f(lna)=alna-a(lna+1)2<0,所以函数f(x)在(-∞,+∞)上至多有一个零点,故不符合题意.若lna=-1,即a=,当x∈(-∞,+∞)时,f′(x)≥0,f(x)单调递增,故不符合题意.若lna>-1,即a>,当x∈(-∞,-1)∪(lna,+∞)时,f′(x)>0,f(x)单调递增;当x∈(-1,lna)时,f′(x)<0,f(x)单调递减.又f(-1)=-<0,所以函数f(x)在(-∞,+∞)上至多有一个零点,故不符合题意.综上,实数a的取值范围是(-∞,0).法二:数形结合法令f(x)=0,即xex-a(x+1)2=0,得xex=a(x+1)2.当x=-1时,方程为-e-1=a×0,显然不成立,所以x=-1不是方程的解,即-1不是函数f(x)的零点.当x≠-1时,分离参数得a=.记g(x)=(x≠-1),则g′(x)==.当x<-1时,g′(x)<0,函数g(x)单调递减;当x>-1时,g′(x)>0,函数g(x)单调递增.当x=0时,g(x)=0;当x→-∞时,g(x)→0;当x→-1时,g(x)→-∞;当x→+∞时,g(x)→+∞.故函数g(x)的图象如图所示.作出直线y=a,由图可知,当a<0时,直线y=a和函数g(x)的图象有两个交点,此时函数f(x)有两个零点.故实数a的取值范围是(-∞,0).[题后悟通]利用函数零点的情况求参数范围的方法(1)分离参数(a=g(x))后,将原问题转化为y=g(x)的值域(最值)问题或转化为直线y=a与y...