高中数学高考数学10大专题技巧--专题15 分组转化法求和(学生版).docx.doc本文件免费下载 【共10页】

高中数学高考数学10大专题技巧--专题15 分组转化法求和(学生版).docx.doc
高中数学高考数学10大专题技巧--专题15 分组转化法求和(学生版).docx.doc
高中数学高考数学10大专题技巧--专题15 分组转化法求和(学生版).docx.doc
专题15分组转化法求和【基本知识】分组转化法求和有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个可求和的数列,先分别求和,然后再合并.1.若an=bn±cn,且{bn},{cn}为可求和的数列(等差或等比数列),可采用分组求和法求{an}的前n项和.2.通项公式为an=的数列,其中数列{bn},{cn}是可求和的数列(等比数列或等差数列),可采用分组求和法求和.考点一选填题【基本题型】[例1](1)若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n项和为()A.2n+n2-1B.2n+1+n2-1C.2n+1+n2-2D.2n+n-2(2)已知数列{an}中,a1=a2=1,an+2=则数列{an}的前20项和为()A.1121B.1122C.1123D.1124(3)若数列{an}的通项公式是an=(-1)n·(3n-2),则a1+a2+…+a12=()A.18B.15C.-18D.-15(4)已知数列{an}的通项公式为an=log(n+1)(n+2)(n∈N*),我们把使乘积a1·a2·a3·…·an为整数的n叫做“优数”,则在(0,2018]内的所有“优数”的和为()A.1024B.2012C.2026D.2036【对点精练】1.已知数列{an}的通项公式是an=2n-3n,则其前20项和为()A.380-B.400-C.420-D.440-2.已知数列{an}满足a1=1,an+1·an=2n(n∈N*),Sn是数列{an}的前n项和,则S2020=()A.22020-1B.3×21010-3C.3×21010-1D.3×22020-23.已知函数f(n)=且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.102004.已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100=________.5.已知公比不为1的等比数列{an}的前5项积为243,且2a3为3a2和a4的等差中项.若数列{bn}满足bn=log3an+2(n∈N*),则数列{an+bn}的前n项和Sn=________.6.1++1+++…+的值为()A.18+B.20+C.22+D.18+考点二解答题1.等差(等比)+等比(等差)模型【基本题型】[例2]已知数列{an}为等差数列,其中a5=3a2,a2+a3=8.(1)求数列{an}的通项公式;(2)数列{bn}中,b1=1,b2=2,从数列{an}中取出第bn项记为cn,若{cn}是等比数列,求{bn}的前n项和.[例3]已知等差数列{an}满足a5=9,a2+a6=14.(1)求{an}的通项公式;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)若bn=an+qan(q>0),求数列{bn}的前n项和Sn.[例4]已知递增等比数列{an}的前三项之积为8,且这三项分别加上1,2,2后又成等差数列.(1)求等比数列{an}的通项公式;(2)记bn=an+2n,求数列{bn}的前n项和Tn.[例5]设{an}是公比大于1的等比数列,Sn为其前n项和,已知S3=7,a1+3,3a2,a3+4构成等差数列.(1)求数列{an}的通项公式;(2)令bn=an+lnan,求数列{bn}的前n项和Tn.[例6]已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn.若a1=b1=3,a4=b2,S4-T2=12.(1)求数列{an}与{bn}的通项公式;(2)求数列{an+bn}的前n项和.[例7]已知数列{an}的前n项和Sn=,n∈N*.(1)求数列{an}的通项公式;(2)设bn=2an+(-1)nan,求数列{bn}的前2n项和.[例8]设数列{an}的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.(1)求通项公式an;(2)求数列{|an-n-2|}的前n项和.[例9]若数列{an}的前n项和Sn满足Sn=2an-λ(λ>0,n∈N*).(1)证明数列{an}为等比数列,并求an;(2)若λ=4,bn=(n∈N*),求数列{bn}的前2n项和T2n.[例10]数列{bn}满足bn+1=2bn+2,bn=an+1-an,且a1=2,a2=4.(1)求数列{bn}的通项公式;(2)求数列{an}的前n项和Sn.【对点精练】7.已知数列{an}是等差数列,Sn是其前n项和,且a1=2,S3=12.(1)求数列{an}的通项公式;(2)设bn=an+4n,求数列{bn}的前n项和Tn.8.已知等差数列{an}的前n项和为Sn,且满足S4=24,S7=63.(1)求数列{an}的通项公式;(2)若bn=2an+an,求数列{bn}的前n项和Tn.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com9.已知数列{an}是各项均为正数的等比数列,且a1+a2=2,a3+a4=32.(1)求数列{an}的通项公式;(2)设bn=a+log2an,求数列{bn}的前n项和Tn.10.已知在等比数列{an}中,a1=1,且a1,a2,a3-1成等差...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
免费
14下载
高中2022·微专题·小练习·数学【新高考】专练45.docx
高中2022·微专题·小练习·数学【新高考】专练45.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练9.docx
高中2022·微专题·小练习·数学·理科【统考版】专练9.docx
免费
0下载
2009年高考数学试卷(理)(四川)(解析卷).pdf
2009年高考数学试卷(理)(四川)(解析卷).pdf
免费
0下载
上海市普陀区2022年高三第一学期期末(一模)学科质量检测数学试卷(word原卷版).docx
上海市普陀区2022年高三第一学期期末(一模)学科质量检测数学试卷(word原卷版).docx
免费
0下载
2014年上海市浦东新区高考数学一模试卷(文科).doc
2014年上海市浦东新区高考数学一模试卷(文科).doc
免费
0下载
2017年高考数学真题(浙江自主命题).doc
2017年高考数学真题(浙江自主命题).doc
免费
1下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第6讲 椭圆(二)(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第6讲 椭圆(二)(含解析).docx
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点21  概率与统计.docx
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点21  概率与统计.docx
免费
8下载
专题6-数列与极限专题-沪教版高三数学2021-2022一模考试汇编.docx
专题6-数列与极限专题-沪教版高三数学2021-2022一模考试汇编.docx
免费
0下载
2016年上海高考理科数学真题(解析版).docx
2016年上海高考理科数学真题(解析版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练17.docx
高中2024版考评特训卷·数学【新教材】考点练17.docx
免费
0下载
1997年西藏高考文科数学真题及答案.doc
1997年西藏高考文科数学真题及答案.doc
免费
2下载
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word)  课时作业(十三).docx
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word) 课时作业(十三).docx
免费
28下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(三).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(三).docx
免费
0下载
高中2024版《微专题》·数学·新高考专练 15.docx
高中2024版《微专题》·数学·新高考专练 15.docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (9).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (9).pdf
免费
0下载
2007年广东高考文科数学真题及答案.doc
2007年广东高考文科数学真题及答案.doc
免费
29下载
1993年高考数学真题(文科 )(福建自主命题).doc
1993年高考数学真题(文科 )(福建自主命题).doc
免费
15下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群