上海市嘉定区2022年高三第一学期期末(一模)数学答案 (1).doc本文件免费下载 【共6页】

上海市嘉定区2022年高三第一学期期末(一模)数学答案 (1).doc
上海市嘉定区2022年高三第一学期期末(一模)数学答案 (1).doc
上海市嘉定区2022年高三第一学期期末(一模)数学答案 (1).doc
上海市嘉定区2022届高三一模数学试卷官方标答一、填空题(本大题共有12题,满分54分,第1—6题每题4分,第7---12题每题5分)考生应在答题纸的相应位置直接填写结果.1.2.3.4.5.6.7.8.9.10.11.12.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.B14.D15.D16.C三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必须的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)由意得题.………………………………2分所以三棱锥的体积为即所求三棱锥的体积为.…………………………………………………6分(2)联结.由意得题,,且∥,所以直线与所成的角就是面直异线与所成的角.…………………3分在中,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1ABCA1B1CD,由余弦定理得,…………………………6分因为,所以.因此所求面直异线与所成角的大小为.………………………8分18.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)因为,则,且.…………2分由正弦定理,得,即,即,.……………………………………………………………5分又因为,所以.即,外接半圆径的值为.………………………………………6分(2)由得,………………………2分于是.……………………………………………………4分当,由余弦定理,得时.当,由余弦定理,得时.所以,或.……………………………………………………………8分19.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)由意知,第题年至此后第()年的累投入计为(千万元).……………………………………………………………2分第设年的收入为,前年的累收入计为,由意得题,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comyOAPxFQ所以列数是以首、以为项公比的一等比列,有为个数则(千万元),(千万元),…………………5分所以,即(千万元).答:所求的表式达为().……………………6分(2)因为,……………………………………………2分所以当,时,即,单调递减当,时,即增,单调递………………………4分又,,,所以新品第该产将从年始持利.开并续赢答:新品该产将从年始持利.开并续赢………………………………………8分20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)解:(1)因为椭圆点过、,有则,解得,…………………………………………………………3分所以椭圆的准方程标为.………………………………………………4分(2)设(),.由(1)知,.因为,则有,即,所以解得即.………………………………………………………………………4分分别将、点的坐代入两标得小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解得(舍)或所以所求点的坐标为.……………………………………………………6分(3)存在常设数,使得.由意可直题设线的方程为,点、,则.…………………2分又因为,即,即,所以即(*)……………………………………4分又由得,,且.代入(*)得,即,所以存在常数,使得.……………………………………6分21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)(1)解:函数在上具有性质.……………………………1分若,则,……………………………………………………2分小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com因为,且,所以函数在上具有性质.……………………………………4分(2)解:由意,存在题,使得,由正弦的定得线义(舍)或(),得则.………………………………………………………………………2分因为,所以.……………………………………………………4分又因为且(),所以,即所求的取范是值围.……………………………………6分(3)明:证设,.…………………………………2分有则,,,…,,…,().以上各式相加得,即().…………...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群