小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com班级姓名学号分数第二十六章反比例函数(B卷·能力提升练)(时间:60分钟,满分:100分)一.选择题(共11小题,满分44分,每小题4分)1.(2022•襄阳)若点A(﹣2,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定【分析】根据反比例函数图象上点的坐标特征即可求解.【解答】解: 点A(﹣2,y1),B(﹣1,y2)都在反比例函数y=的图象上,k=2>0,∴在每个象限内y随x的增大而减小, ﹣2<﹣1,∴y1>y2,故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是解题的关键.2.(2022•菏泽)根据如图所示的二次函数y=ax2+bx+c的图象,判断反比例函数y=与一次函数y=bx+c的图象大致是()A.B.C.D.【分析】先根据二次函数的图象,确定a、b、c的符号,再根据a、b、c的符号判断反比例函数y=与一次函数y=bx+c的图象经过的象限即可.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解答】解:由二次函数图象可知a>0,c<0,由对称轴x=﹣>0,可知b<0,所以反比例函数y=的图象在一、三象限,一次函数y=bx+c图象经过二、三、四象限.故选:A.【点评】本题主要考查二次函数图象的性质、一次函数的图象的性质、反比例函数图象的性质,关键在于通过二次函数图象推出a、b、c的取值范围.3.(2022•安顺)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b和反比例函数y=(c≠0)在同一直角坐标系中的图象可能是()A.B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.D.【分析】直接利用二次函数图象经过的象限得出a,b,c的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解: 二次函数y=ax2+bx+c的图象开口向上,∴a>0, 该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0. 抛物线交y轴的负半轴,∴c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=(c≠0)在二、四象限.故选:A.【点评】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.4.(2022•西藏)在同一平面直角坐标系中,函数y=ax+b与y=(其中a,b是常数,ab≠0)的大致图象是()A.B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.D.【分析】根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.【解答】解:若a>0,b>0,则y=ax+b经过一、二、三象限,反比例函数y=(ab≠0)位于一、三象限,若a>0,b<0,则y=ax+b经过一、三、四象限,反比例函数数y=(ab≠0)位于二、四象限,若a<0,b>0,则y=ax+b经过一、二、四象限,反比例函数y=(ab≠0)位于二、四象限,若a<0,b<0,则y=ax+b经过二、三、四象限,反比例函数y=(ab≠0)位于一、三象限,故选:A.【点评】本题主要考查了一次函数和反比例函数的图象,熟知一次函数、反比例函数的性质是解题的关键.5.(2022•长春)如图,在平面直角坐标系中,点P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,将线段QP绕点Q顺时针旋转60°得到线段QM.若点M也在该反比例函数的图象上,则k的值为()A.B.C.D.4小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】作MN⊥x轴于N,根据题意P(,2),PQ=2,由于将线段QP绕点Q顺时针旋转60°得到线段QM,得出QM=QP=2,∠PQM=60°,即可得出∠MQN=30°,即可得出MN=QM=1,QN==,得到M(+,1),代入反比例函数解析式即可求得k的值.【解答】解:作MN⊥x轴于N, P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,∴P(,2),∴PQ=2, 将线段QP绕点Q顺时针旋转60°得到线段QM.∴QM=QP=2,∠PQM=60°,∴∠MQN=90°60°﹣=30°,∴MN=QM=1,∴QN==,∴M(+,1), ...