小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com24.4弧长和扇形面积弧长公式半径为R的圆中,360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)题型1:运用公式计算弧长1.已知一个扇形的圆心角是150°,半径是3,则该扇形的弧长为()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式1-1】如图,AB是圆O的直径,CD是弦,CD∥AB,∠BCD=30°,AB=6,则弧BD的长为()A.πB.4πC.2πD.45π【变式1-2】如图,AB是⊙O的直径,AC是⊙O的弦,若∠A=20°,AB=6,则弧长为()A.B.C.D.题型2:列方程求圆心角或半径2.已知一段弧长为9.42cm,该段弧所在的圆的半径为6cm,求这段弧所对的圆心角度数.【变式2-1】如图,劣弧AB的长为6π,圆心角∠AOB=90°,求此弧所在圆的半径.【变式2-2】已知圆上一段弧长为4πcm,它所对的圆心角为100°,求该圆的半径.题型3:弧长计算中的最值问题(提升)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.如图,在扇形AOB中,∠AOB=120°,OB=2,点D为弦AB上一动点(不与A,B两点重合),连接OD并延长交于点C,当CD为最大值时,的长为()A.B.C.D.π【变式3-1】如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BC于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为()A.B.C.D.【变式3-2】如图,在扇形AOB中,∠AOB=90°,点C在上,且∠AOC=60°,点P是线段OB上一动点,若OA=2,则图中阴影部分周长的最小值是.题型4:弧长计算与实际应用问题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.有一段圆弧形公路,弯道半径为45米,请你计算,圆心角等于60°的圆弧形公路有多少米长?(精确到0.1米)【变式4-1】如图,已知中心线的两个半圆弧半径都为1000mm,两直管道的长度都为2000mm,求图中管道的展直长度(即图中虚线所表示的中心线的长度,精确到1mm)扇形面积公式半径为R的圆中,360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:题型5:应用公式计算扇形面积5.一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为()A.30πcm2B.60πcm2C.120πcm2D.180πcm2【变式5-1】已知一个扇形的圆心角的度数为120°,半径长为3,则这个扇形的面积为多少?(结果保留π)【变式5-2】如图、A、B、C三点在半径为1的⊙O上,四边形ABCO是菱形,求扇形OAC的面积.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com题型6:列方程求圆心角或半径6.已知扇形的圆心角为30°,面积为3πcm2,则扇形的半径为()A.6cmB.12cmC.18cmD.36cm【变式6-1】已知一个扇形的半径为R,圆心角为n°,当这个扇形的面积与一个直径为R的圆面积相等时,则这个扇形的圆心角n的度数是()A.180°B.120°C.90°D.60°【变式6-2】已知⊙O的半径为2cm,扇形AOB的面积为πcm2,圆心角∠AOB是多少度?题型7:扇形计算与实际应用问题7.如图,一扇形纸扇完全打开后,AB和AC的夹角为120°,AB长为30cm,贴纸部分的宽BD为18cm,求纸扇上贴纸部分的面积.【变式7-1】某灯具厂生产一批台灯罩,如图的阴影部分为灯罩的侧面展开图.已知半径OA=24cm,OC=12cm,∠AOB=135°.(计算结果保留π)(1)若要在灯罩的上下边缘镶上花边(花边的宽度忽略不计),至少需要多长的花边?(2)求灯罩的侧面积(接缝处忽略不计).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式7-2】如图,一只小羊被主人用绳子拴在长为5米,宽为2米的长方形水泥台的一个顶点上,水泥台的周围都是草地.(1)若绳子长为4米,求这只羊能吃到草的区域的最大面积.(结果保留π)(2)为了增加小羊吃草的范围,现决定把绳子的长度增加到6米,求这只羊现在能吃到草的区域的最大面积.(结果保留π)题型8:求阴影部分面积-规则图形8(S阴=S扇-S△).如图,在Rt△ABC中,∠ABC=90°,AC=4,AB=2,以点B为圆心,AB为...