小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第12讲幂函数1.理解幂函数的概念;2.会画幂函数,,,,的图象,结合这几个幂函数的图象,理解幂函数图象的变化规律和性质;3.能解决与幂函数有关的复合函数问题。一、幂函数的概念1、幂函数的概念:把形如函数y=xα的函数称为幂函数,其中x是自变量,α是常数.2、幂函数需要满足三个条件:(1)系数为1;(2)指数α为常数;(3)后面不加任何项。例如,,等的函数都不是幂函数.二、幂函数的图象同一坐标系中,幂函数y=x,y=x2,y=x3,y=x-1,y=x12的图象(如图).三、幂函数的性质1、所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);2、如果α>0,那么幂函数的图象过原点,并且在区间[0,+∞)上单调递增;3、如果α<0,那么幂函数的图象在区间(0,+∞)上单调递减,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限接近y轴,当x从原点趋向于+时,图象在∞x轴上方无限接近x轴;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4、在(1,+∞)上,随幂指数的逐渐增大,图象越来越靠近y轴.四、画幂函数图象的技巧(类比具体幂函数)1、当时,函数图象与坐标轴没有交点,类似于的图象;2、当时,函数的图象向轴弯曲,类似于的图象;3、当时,函数的图象向轴弯曲,类似于的图象。再结合函数的奇偶性就容易知道它们的图象了。考点一:判断是否为幂函数例1.下列函数为幂函数的是()A.B.C.D.【变式训练】现有下列函数:①;②;③;④;⑤;⑥;⑦,其中幂函数的个数为()A.1B.2C.3D.4考点二:根据函数是幂函数求参数例2.已知幂函数f(x)=x(α为常数)的图象经过点,则f(9)=()A.B.C.3D.【变式训练】幂函数在第一象限内是减函数,则()A.2B.C.D.考点三:幂函数的定义域问题例3.函数的定义域为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【变式训练】给出5个幂函数:①;②;③;④;⑤,其中定义域为的是()A.①②B.②③C.②④D.③④考点四:幂函数的图象判断与应用例4.如图,下列3个幂函数的图象,则其图象对应的函数可能是()A.①,②,③B.①,②,③C.①,②,③D.①,②,③【变式训练】如图所示,图中的曲线是幂函数在第一象限的图象,已知取,四个值,则相应于,,,的依次为()A.,,,B.,,,C.,,,D.,,,考点五:幂函数图象过定点例5.当时,函数的图象恒过定点A,则点A的坐标为________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式训练】不论实数取何值,函数恒过的定点坐标是___________.考点六:幂函数的单调性与奇偶性例6.下列函数中,在区间上为增函数的是()A.B.C.D.【变式训练1】已知幂函数的图象经过点,则在定义域内()A.单调递增B.单调递减C.有最大值D.有最小值【变式训练2】已知幂函数的图象关于y轴对称,则的值为_________.考点七:利用幂函数单调性解不等式例7.已知幂函数,若,则a的取值范围是__________.【变式训练】若幂函数过点,则满足不等式的实数的取值范围是______.考点八:幂函数的综合应用例8.已知幂函数,且满足:①在区间上是增函数;②对任意的,都有.(1)求同时满足①②的幂函数的解析式,(2)在(1)条件下,求时的值域.【变式训练】已知幂函数(Z)的图象关于轴对称,且在上是单调递减函数.(1)求的值;(2)解不等式.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.下列函数,既是幂函数,又是奇函数的是()A.B.C.D.2.已知幂函数的图象经过点,则该幂函数的大致图象是()A.B.C.D.3.幂函数的图象过点,则下列说法正确的是()A.偶函数,单调递增区间B.偶函数,单调递减区间C.偶函数,单调递增区间D.奇函数,单调递增区间4.幂函数在第一象限的图像如图所示,则的大小关系是()A.B.C.D.5.(多选)下列关于函数的描述中,正确的是()A.是幂函数B.是指数函数C.是对数函数D.不是二次函数6.(多...