2024年新高考数学复习资料专题05 数列求和(倒序相加法、分组求和法)(典型题型归类训练)(解析版).docx本文件免费下载 【共23页】

2024年新高考数学复习资料专题05 数列求和(倒序相加法、分组求和法)(典型题型归类训练)(解析版).docx
2024年新高考数学复习资料专题05 数列求和(倒序相加法、分组求和法)(典型题型归类训练)(解析版).docx
2024年新高考数学复习资料专题05 数列求和(倒序相加法、分组求和法)(典型题型归类训练)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题05数列求和(倒序相加法、分组求和法)(典型题型归类训练)目录一、必备秘籍.........................................................................................................1二、典型题型.........................................................................................................1题型一:倒序相加法........................................................................................1题型二:通项为型求和.....................................................................4题型三:通项为型求和..........................................................7三、专题05数列求和(倒序相加法、分组求和法)专项训练...........................12一、必备秘籍1、倒序相加法,即如果一个数列的前项中,距首末两项“等距离”的两项之和都相等,则可使用倒序相加法求数列的前项和.2、分组求和法2.1如果一个数列可写成的形式,而数列,是等差数列或等比数列或可转化为能够求和的数列,那么可用分组求和法.2.2如果一个数列可写成的形式,在求和时可以使用分组求和法.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com二、典型题型题型一:倒序相加法例题1.(2023·全国·高三专题练习)已知函数.(1)求证:函数的图象关于点对称;(2)求的值.【答案】(1)证明见解析(2)【详解】(1)因为,所以,所以,即函数的图象关于点对称.(2)由(1)知与首尾两端等距离的两项的和相等,使用倒序相加求和.因为,所以(倒序),又由(1)得,所以,所以.例题2.(2023秋·江苏·高二专题练习)设函数,设,.(1)计算的值.(2)求数列的通项公式.【答案】(1)2(2)【详解】(1);小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)由题知,当时,,又,两式相加得,所以,又不符合,所以.例题3.(2023·全国·高二专题练习)设是函数的图象上任意两点,且,已知点的横坐标为.(1)求证:点的纵坐标为定值;(2)若且求;【答案】(1)证明见解析;(2).【详解】(1)证明:设,因为,故可得,由知,故,故.故点的纵坐标为定值.(2)由(1)知,两式相加得:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,故.例题4.(2023秋·山东青岛·高二山东省青岛第五十八中学校考期末)已知函数满足,若数列满足:.(1)求数列的通项公式;【答案】(1),;【详解】(1)因为,由①,则②,所以可得:,故,.例题5.(2023·全国·高二专题练习)已知为等比数列,且,若,求的值.【答案】2021【详解】因为为等比数列,,所以,因为,所以,同理可得,所以小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com题型二:通项为型求和例题1.(2023·贵州六盘水·统考模拟预测)已知等差数列的前n项和为,等比数列的各项均为正数,且满足,,.(1)求数列与的通项公式;(2)记,求数列的前n项和.【答案】(1),(2)【详解】(1)记等差数列的公差为d,等比数列的公比为q,则由题可得,,解得,又等比数列的各项均为正数,所以,所以,所以,.(2)由(1)可得,,所以例题2.(2023春·黑龙江齐齐哈尔·高二齐齐哈尔市恒昌中学校校考阶段练习)已知各项均为正数的等差数列的首项,,,成等比数列;(1)求数列的通项公式;(2)若,求数列的前项和.【答案】(1);小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)【详解】(1)解:设等差数列的公差为,又因为,,成等比数列,所以,即,整理得:,又因为,解得或(舍)则有,所以数列的通项公式为;(2)解:因为,所以,所以.所以.例题3.(2023春·吉林长春·高二长春外国语学校校考期中)已知等比数列中,,(1)求数列的通项公式;(2)若,求数列的前项和.【答案】(1)(2)【详解】(1)设公比是,则,,因此,所以;(2)由(1),小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.例...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
免费
0下载
2024年新高考数学复习资料押新高考第12题 集合(原卷版).docx
2024年新高考数学复习资料押新高考第12题 集合(原卷版).docx
免费
0下载
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (1).pdf
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (1).pdf
免费
0下载
2019年高考数学试卷(理)(天津)(空白卷).doc
2019年高考数学试卷(理)(天津)(空白卷).doc
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(二十一).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(二十一).docx
免费
26下载
精品解析:江苏省南通市2024届高三第一次调研测试数学试题(原卷版).docx
精品解析:江苏省南通市2024届高三第一次调研测试数学试题(原卷版).docx
免费
0下载
2024年新高考数学复习资料重难点突破06 恒成立与能成立问题(解析版).docx
2024年新高考数学复习资料重难点突破06 恒成立与能成立问题(解析版).docx
免费
0下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
高中数学高考数学10大专题技巧--专题14 错位相减法求和(学生版).docx.doc
高中数学高考数学10大专题技巧--专题14 错位相减法求和(学生版).docx.doc
免费
0下载
2017年高考数学真题(文科)(新课标Ⅲ)(解析版).doc
2017年高考数学真题(文科)(新课标Ⅲ)(解析版).doc
免费
29下载
2014年高考数学试卷(理)(天津)(空白卷).pdf
2014年高考数学试卷(理)(天津)(空白卷).pdf
免费
0下载
2018年高考数学试卷(文)(新课标Ⅰ)(空白卷) (6).pdf
2018年高考数学试卷(文)(新课标Ⅰ)(空白卷) (6).pdf
免费
0下载
高中数学·选择性必修·第一册·(RJ-A版)课时作业WORD  课时作业(十四).docx
高中数学·选择性必修·第一册·(RJ-A版)课时作业WORD 课时作业(十四).docx
免费
8下载
1990年天津高考文科数学真题及答案.doc
1990年天津高考文科数学真题及答案.doc
免费
23下载
1994年辽宁高考文科数学真题及答案.doc
1994年辽宁高考文科数学真题及答案.doc
免费
20下载
2023年高考数学真题(北京自主命题)(原卷版).doc
2023年高考数学真题(北京自主命题)(原卷版).doc
免费
0下载
2024版《微专题》·数学(理 )·统考版专练 23.docx
2024版《微专题》·数学(理 )·统考版专练 23.docx
免费
18下载
高考数学复习  第12讲 函数的图像(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
高考数学复习 第12讲 函数的图像(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2023年高考数学试卷(新课标Ⅱ卷)(空白卷) (7).pdf
2023年高考数学试卷(新课标Ⅱ卷)(空白卷) (7).pdf
免费
0下载
高考数学复习  思维拓展01 柯西不等式与权方和不等式的应用(精讲+精练)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
高考数学复习 思维拓展01 柯西不等式与权方和不等式的应用(精讲+精练)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料