小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com黄金冲刺大题03立体几何1.(2024·黑龙江·二模)如图,已知正三棱柱的侧棱长和底面边长均为2,M是BC的中点,N是的中点,P是的中点.(1)证明:平面;(2)求点P到直线MN的距离.2.(2024·安徽合肥·二模)如图,在四棱锥中,底面是边长为2的菱形,是侧棱的中点,侧面为正三角形,侧面底面.(1)求三棱锥的体积;(2)求与平面所成角的正弦值.3.(2023·福建福州·模拟预测)如图,在三棱柱中,平面平面,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)设为中点,证明:平面;(2)求平面与平面夹角的余弦值.4.(2024·山西晋中·三模)如图,在六面体中,,,且,平行于平面,平行于平面,.(1)证明:平面平面;(2)若点到直线的距离为,为棱的中点,求平面与平面夹角的余弦值.5.(2024·辽宁·二模)棱长均为2的斜三棱柱中,在平面ABC内的射影O在棱AC的中点处,P为棱(包含端点)上的动点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求点P到平面的距离;(2)若平面,求直线与平面所成角的正弦值的取值范围.6.(2024·重庆·模拟预测)在如图所示的四棱锥PABCD中,已知,,,是正三角形,点M在侧棱PB上且使得平面.(1)证明:;(2)若侧面底面,与底面所成角的正切值为,求二面角的余弦值.7.(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,m,m,m,且ED,CF都垂直于平面ABCD,m,,平面平面ABCD.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8.(2024·重庆·模拟预测)如图,ACDE为菱形,,,平面平面ABC,点F在AB上,且,M,N分别在直线CD,AB上.(1)求证:平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若,MN为直线CD,AB的公垂线,求的值;(3)记直线BE与平面ABC所成角为,若,求平面BCD与平面CFD所成角余弦值的范围.9.(2024·安徽·二模)将正方形绕直线逆时针旋转,使得到的位置,得到如图所示的几何体.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求证:平面平面;(2)点为上一点,若二面角的余弦值为,求.10.(2024·安徽黄山·二模)如图,已知为圆台下底面圆的直径,是圆上异于的点,是圆台上底面圆上的点,且平面平面,,,是的中点,.(1)证明:;(2)求直线与平面所成角的正弦值.11.(2024·黑龙江哈尔滨·一模)正四棱台的下底面边长为,,为中点,已知点满足,其中.(1)求证;(2)已知平面与平面所成角的余弦值为,当时,求直线与平面所成角的正弦值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com12.(2024·辽宁·三模)如图,在三棱柱中,侧面底面,,点为线段的中点.(1)求证:平面;(2)若,求二面角的余弦值.13.(2024·广东广州·一模)如图,在四棱锥中,底面是边长为的菱形,是等边三角形,,点,分别为和的中点.(1)求证:平面;(2)求证:平面平面;(3)求与平面所成角的正弦值.14.(2024·广东梅州·二模)如图,在四棱锥中,平面平面,底面为直角梯形,为等边三角形,,,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求证:;(2)点在棱上运动,求面积的最小值;(3)点为的中点,在棱上找一点,使得平面,求的值.15.(2024·广东广州·模拟预测)如图所示,圆台的轴截面为等腰梯形,为底面圆周上异于的点,且是线段的中点.(1)求证:平面.(2)求平面与平面夹角的余弦值.16.(2024·广东深圳·二模)如图,三棱柱中,侧面底面ABC,且,.(1)证明:平面ABC;(2)若,,求平面与平面夹角的余弦值.17.(2024·河北保定·二模)如图,在四棱锥中,平面内...