2024年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(解析版).docx本文件免费下载 【共27页】

2024年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(解析版).docx
2024年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(解析版).docx
2024年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题08数列求和(奇偶项讨论求和)(典型题型归类训练)目录一、必备秘籍........................................................1二、典型题型........................................................2题型一:求的前项和.............................2题型二:求的前项和..............................5题型三:通项含有的类型;例如:.....................10题型四:已知条件明确的奇偶项或含有三角函数问题..................13三、专题08数列求和(奇偶项讨论求和)专项训练......................17一、必备秘籍有关数列奇偶项的问题是高考中经常涉及的问题,解决此类问题的难点在于搞清数列奇数项和偶数项的首项、项数、公差(比)等.本专题主要研究与数列奇偶项有关的问题,并在解决问题中让学生感悟分类讨论等思想在解题中的有效运用.因此,在数列综合问题中有许多可通过构造函数来解决.类型一:通项公式分奇、偶项有不同表达式;例如:角度1:求的前项和角度2:求的前项和类型二:通项含有的类型;例如:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com类型三:已知条件明确的奇偶项或含有三角函数问题二、典型题型题型一:求的前项和例题1.(2023秋·安徽·高三校联考阶段练习)已知为等差数列的前n项和,,.(1)求的通项公式;(2)若,求数列的前项和.【答案】(1)(2)【详解】(1)设的公差为d. ,∴,解得.∴.(2)当n为奇数时,,当为偶数时,.∴设,①小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则,②,得∴.故.例题2.(2023秋·山东德州·高三德州市第一中学校考阶段练习)数列满足,.(1)求的通项公式;(2)设,求数列的前项和.【答案】(1)(2)【详解】(1) ,,则,∴,两式相除得:,当时,,∴,即,当时,,∴,即,综上所述,的通项公式为:;(2)由题设及(1)可知:,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com例题3.(2023秋·湖南衡阳·高三衡阳市八中校考阶段练习)已知等差数列的前项和为,且满足,.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.【答案】(1)(2)【详解】(1)依题意,设数列的公差为,因为,所以,则,因为,即,所以,所以,,所以,即.(2)因为,所以,所以.例题4.(2023秋·安徽·高三安徽省宿松中学校联考开学考试)已知数列满足,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)记,求证:数列是等比数列;(2)若,求.【答案】(1)证明见解析(2)【详解】(1)因为,所以,故,故,当时,,故,所以数列是首项为5,公比为2的等比数列;(2)由(1)知:,故,其中,故,设,故.题型二:求的前项和例题1.(2023·浙江绍兴·统考模拟预测)已知数列满足.(1)求的通项公式;(2)设数列满足求的前项和.【答案】(1),;(2).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】(1)根据题意可知,所以当为奇数时,,即,所以当为偶数时,;当为偶数时,,即,所以当为奇数时,.综上,,.(2)由(1)可知当为奇数时,若,即,解得,当为偶数时,若,即,解得,所以,当时,,所以.当时,且为奇数时,当时,且为偶数时,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.综上,例题2.(2023·全国·高三专题练习)在数列中,,,且对任意的,都有.(1)证明:是等比数列,并求出的通项公式;(2)若,求数列的前项和.【答案】(1)证明见解析,;(2).【详解】(1)证明:因为,,所以.因为,所以,又,则有,所以,所以是以4为首项,2为公比的等比数列.所以,所以,又,所以是以1为首项,1为公差的等差数列,所以,所以.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)由(1)知,则的奇数项为以为首项,为公比的等比数列;偶数项是以,为公差的等差数列.所以当为偶数,且时,;当为奇数,且时,为偶数,.时,,满足....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
免费
0下载
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
免费
0下载
2016年海南省高考数学试题及答案(文科).doc
2016年海南省高考数学试题及答案(文科).doc
免费
4下载
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
免费
0下载
2008年高考数学试卷(理)(北京)(空白卷).doc
2008年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
1997年高考数学真题(文科)(湖南自主命题).doc
1997年高考数学真题(文科)(湖南自主命题).doc
免费
17下载
2018年高考数学真题(文科)(天津自主命题).doc
2018年高考数学真题(文科)(天津自主命题).doc
免费
23下载
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
免费
0下载
2006年重庆高考文科数学真题及答案.doc
2006年重庆高考文科数学真题及答案.doc
免费
3下载
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
免费
0下载
2019年高考数学真题(理科)(北京自主命题).docx
2019年高考数学真题(理科)(北京自主命题).docx
免费
5下载
2014年高考数学试卷(文)(广东)(空白卷).doc
2014年高考数学试卷(文)(广东)(空白卷).doc
免费
0下载
2016年上海市闸北区高考数学二模试卷(文科).doc
2016年上海市闸北区高考数学二模试卷(文科).doc
免费
0下载
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
免费
0下载
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
免费
20下载
2017年上海市奉贤区高考数学一模试卷.doc
2017年上海市奉贤区高考数学一模试卷.doc
免费
0下载
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群