2024年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(解析版).docx本文件免费下载 【共27页】

2024年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(解析版).docx
2024年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(解析版).docx
2024年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题08数列求和(奇偶项讨论求和)(典型题型归类训练)目录一、必备秘籍........................................................1二、典型题型........................................................2题型一:求的前项和.............................2题型二:求的前项和..............................5题型三:通项含有的类型;例如:.....................10题型四:已知条件明确的奇偶项或含有三角函数问题..................13三、专题08数列求和(奇偶项讨论求和)专项训练......................17一、必备秘籍有关数列奇偶项的问题是高考中经常涉及的问题,解决此类问题的难点在于搞清数列奇数项和偶数项的首项、项数、公差(比)等.本专题主要研究与数列奇偶项有关的问题,并在解决问题中让学生感悟分类讨论等思想在解题中的有效运用.因此,在数列综合问题中有许多可通过构造函数来解决.类型一:通项公式分奇、偶项有不同表达式;例如:角度1:求的前项和角度2:求的前项和类型二:通项含有的类型;例如:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com类型三:已知条件明确的奇偶项或含有三角函数问题二、典型题型题型一:求的前项和例题1.(2023秋·安徽·高三校联考阶段练习)已知为等差数列的前n项和,,.(1)求的通项公式;(2)若,求数列的前项和.【答案】(1)(2)【详解】(1)设的公差为d. ,∴,解得.∴.(2)当n为奇数时,,当为偶数时,.∴设,①小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则,②,得∴.故.例题2.(2023秋·山东德州·高三德州市第一中学校考阶段练习)数列满足,.(1)求的通项公式;(2)设,求数列的前项和.【答案】(1)(2)【详解】(1) ,,则,∴,两式相除得:,当时,,∴,即,当时,,∴,即,综上所述,的通项公式为:;(2)由题设及(1)可知:,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com例题3.(2023秋·湖南衡阳·高三衡阳市八中校考阶段练习)已知等差数列的前项和为,且满足,.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.【答案】(1)(2)【详解】(1)依题意,设数列的公差为,因为,所以,则,因为,即,所以,所以,,所以,即.(2)因为,所以,所以.例题4.(2023秋·安徽·高三安徽省宿松中学校联考开学考试)已知数列满足,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)记,求证:数列是等比数列;(2)若,求.【答案】(1)证明见解析(2)【详解】(1)因为,所以,故,故,当时,,故,所以数列是首项为5,公比为2的等比数列;(2)由(1)知:,故,其中,故,设,故.题型二:求的前项和例题1.(2023·浙江绍兴·统考模拟预测)已知数列满足.(1)求的通项公式;(2)设数列满足求的前项和.【答案】(1),;(2).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】(1)根据题意可知,所以当为奇数时,,即,所以当为偶数时,;当为偶数时,,即,所以当为奇数时,.综上,,.(2)由(1)可知当为奇数时,若,即,解得,当为偶数时,若,即,解得,所以,当时,,所以.当时,且为奇数时,当时,且为偶数时,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.综上,例题2.(2023·全国·高三专题练习)在数列中,,,且对任意的,都有.(1)证明:是等比数列,并求出的通项公式;(2)若,求数列的前项和.【答案】(1)证明见解析,;(2).【详解】(1)证明:因为,,所以.因为,所以,又,则有,所以,所以是以4为首项,2为公比的等比数列.所以,所以,又,所以是以1为首项,1为公差的等差数列,所以,所以.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)由(1)知,则的奇数项为以为首项,为公比的等比数列;偶数项是以,为公差的等差数列.所以当为偶数,且时,;当为奇数,且时,为偶数,.时,,满足....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
免费
0下载
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
免费
0下载
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
免费
0下载
2023年新课标全国Ⅰ卷数学真题.docx
2023年新课标全国Ⅰ卷数学真题.docx
免费
0下载
2023高考真题 新高考II卷数学-解析 .pdf
2023高考真题 新高考II卷数学-解析 .pdf
免费
12下载
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
免费
0下载
2018年上海市高考数学试卷(1)往年高考真题.doc
2018年上海市高考数学试卷(1)往年高考真题.doc
免费
0下载
2025年新高考数学复习资料提优点4 必要性探路.pptx
2025年新高考数学复习资料提优点4 必要性探路.pptx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
免费
0下载
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
免费
0下载
2014年浙江省高考数学试卷(理科).doc
2014年浙江省高考数学试卷(理科).doc
免费
1下载
专题06 平面向量(15区新题速递)(解析版).docx
专题06 平面向量(15区新题速递)(解析版).docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
2012年高考数学试卷(理)(上海)(解析卷).doc
2012年高考数学试卷(理)(上海)(解析卷).doc
免费
0下载
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群