2024年新高考数学复习资料专题10 数列求和(插入新数列混合求和)(典型题型归类训练)(解析版).docx本文件免费下载 【共20页】

2024年新高考数学复习资料专题10 数列求和(插入新数列混合求和)(典型题型归类训练)(解析版).docx
2024年新高考数学复习资料专题10 数列求和(插入新数列混合求和)(典型题型归类训练)(解析版).docx
2024年新高考数学复习资料专题10 数列求和(插入新数列混合求和)(典型题型归类训练)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题10数列求和(插入新数列混合求和)(典型题型归类训练)目录一、典型题型........................................................1题型一:插入新数列构成等差.......................................1题型二:插入新数列构成等比.......................................5题型三:插入新数混合.............................................7二、专题10数列求和(插入新数列混合求和)专项训练..................11一、典型题型题型一:插入新数列构成等差例题1.(2023秋·湖北·高三校联考阶段练习)已知数列的前项和为,且满足:(1)求数列的通项公式;(2)在与之间插入个数,使这个数组成一个公差为的等差数列,在数列中是否存在三项(其中成等差数列)成等比数列?若存在,求出这三项;若不存在,请说明理由.【答案】(1)(2)不存在,理由见解析【详解】(1)由①得时②小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com①-②得,①中令得,是以为首项,为公比的等比数列,,(2)假设存在这样的三项成等比数列,为递增数列,不妨设,则则,成等差数列,,,由,得,所以,与题设矛盾不存在这样的三项(其中成等差数列)成等比数列.例题2.(2023·全国·高二课堂例题)已知等差数列的首项,公差,在中每相邻两项之间都插入3个数,使它们和原数列的数一起构成一个新的等差数列.(1)求数列的通项公式.(2)是不是数列的项?若是,它是的第几项?若不是,说明理由.【答案】(1)(2)是数列的第8项.【详解】(1)设数列的公差为.由题意可知,,,于是.因为,所以,所以.所以.所以数列的通项公式是.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)数列的各项依次是数列的第1,5,9,13,…项,这些下标构成一个首项为1,公差为4的等差数列,则.令,解得.所以是数列的第8项.例题3.(2023·全国·高三专题练习)已知正项等比数列和其前n项和满足.(1)求的通项公式;(2)在和之间插入m个数,使得这个数依次构成一个等差数列,设此等差数列的公差为,求满足的正整数m的最小值.【答案】(1)(2)6【详解】(1)依题意,设等比数列的公比为,则,,因为,所以,解得或(舍去),因为,所以,即,解得或(舍去),所以;(2)由题意可得,,则,故数列单调递增,不难发现,故满足题意的m的最小值为6.例题4.(2023春·吉林长春·高二长春十一高校考期末)已知等比数列的前n项和为,.(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个等差数列,记插入的这n个数之和为,若不等式小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对一切恒成立,求实数的取值范围;【答案】(1)(2)【详解】(1)设等比数列的公比为q,当时,有,则①,当时,,两式相减可得:,整理得,可知,代入①可得,所以等比数列的通项公式为;(2)由已知在与之间插入n个数,组成以为首项的等差数列,设公差为,所以则,设,则是递增数列,当n为偶数时,恒成立,即,所以;当n为奇函数时,恒成立,即,所以;综上所述,的取值范围是.例题5.(2023春·广东佛山·高二南海中学校考期中)已知数列的前项和为,且.(1)求及数列的通项公式;(2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求数列的前项和.【答案】(1),,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)【详解】(1)由题意,当时,,解得,当时,,即,解得,当时,由,可得,两式相减,可得,整理,得,∴数列是以2为首项,2为公比的等比数列,∴,.(2)由(1)可得,,,在与之间插入个数,使得这个数依次组成公差为的等差数列,则有,∴,∴,∴,,两式相减得,∴.题型二:插入新数列构成等比例题1.(2023·全国·高二专题练习)在数列中抽取部分项(按原来的顺序)构成一个新数列,记为,再在数列插入适当的项,使它们一起能构成一个首项为1,公比为3的等比数列.若,则数列中第项前(不含)插入的项的和最小为()A.30B...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群