2024年新高考数学复习资料【专项精练】第20课 函数y=Asin(ωx+φ)的图象-2024年新高考数学分层专项精练(解析版).docx本文件免费下载 【共21页】

2024年新高考数学复习资料【专项精练】第20课 函数y=Asin(ωx+φ)的图象-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第20课 函数y=Asin(ωx+φ)的图象-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第20课 函数y=Asin(ωx+φ)的图象-2024年新高考数学分层专项精练(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第20课函数y=Asin(ωx+φ)的图象(分层专项精练)【一层练基础】一、单选题1.(2023·全国·高三专题练习)已知函数,则下列结论错误的是()A.函数的最小正周期是B.函数在区间上单调递减C.函数的图象可由函数的图象向左平移个单位长度,再向下平移1个单位长度得到D.函数的图象关于对称【答案】C【分析】A选项,利用三角恒等变换得到,从而求出最小正周期;B选项,整体代入检验是否是单调递减区间;C选项,利用函数平移左加右减,上加下减进行平移,求出平移后的解析式;D选项,代入检验是否是对称中心.【详解】,所以函数的最小正周期是,A正确;当时,,所以单调递减,故B正确;函数的图象向左平移个单位长度,再向下平移1个单位长度得到,故C错误;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,,所以,所以的图象关于中心对称,D正确.故选:C2.(2023·江西南昌·南昌市八一中学校考三模)函数的图像向左平移个单位得到函数的图像,若函数是偶函数,则()A.B.C.D.【答案】C【分析】根据图像平移得函数的解析式,由函数是偶函数,解出,可得.【详解】函数的图像向左平移个单位,得的图像,又函数是偶函数,则有,,解得,;所以.故选:C.3.(2023·全国·高一专题练习)已知函数,将函数的图象向左平移个单位长度,得到函数的部分图象如图所示,则()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案】A【分析】首先根据平移后得到函数的解析式,再根据图象求函数的解析式,即可求值.【详解】平移不改变振幅和周期,所以由图象可知,,解得:,函数的图象向左平移个单位长度,得当时,,且,得所以,.故选:A4.(2022秋·全国·高一期末)已知函数的图象向左平移个单位长度后得到函数的图象关于y轴对称,则的最小值为()A.1B.2C.D.5【答案】D小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】根据辅助角公式,结合正弦型函数的奇偶性进行求解即可.【详解】,因为该函数的图象向左平移个单位长度后得到函数的图象,所以,因为的图象关于y轴对称,所以是偶函数,因此有,因为,所以当时,有最小值,最小值为5,故选:D二、多选题5.(2023秋·广西贵港·高三平南县中学校考阶段练习)已知函数的部分图象如图所示,则()A.的最小正周期为B.当时,的值域为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.将函数的图象向右平移个单位长度可得函数的图象D.将函数的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到的函数图象关于点对称【答案】ACD【分析】先根据中,,的几何意义,求得的解析式,再结合正弦函数的图象与性质,函数图象的变换,逐一分析选项即可.【详解】由图可知,,函数的最小正周期,故A正确;由,知,因为,所以,所以,,即,,又,所以,所以,对于B,当时,,所以,所以的值域为,故B错误;对于C,将函数的图象向右平移个单位长度,得到的图象,故C正确;对于D,将函数的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到的图象,因为当时,,所以得到的函数图象关于点对称,故D正确.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:ACD.6.(2023春·浙江金华·高一浙江省东阳中学校联考阶段练习)已知函数的图象关于直线对称,那么()A.函数为奇函数B.函数在上单调递增C.若,则的最小值为D.函数的图象向右平移个单位长度得到函数的图象【答案】AC【分析】利用的图象关于直线对称,即可求出的值,从而得出的解析式,再利用三角函数的性质逐一判断四个选项即可.【详解】因为的图象关于直线对称,所以,得,,因为,所以,所以,对于A:,所以为奇函数成立,故选项A正确;对于B:时,,函数在上不是单调函数;故选项B不正确;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于C:因为,,又因为,所以的最小值为半个周期,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2019年高考数学试卷(上海)(秋考)(空白卷).pdf
2019年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
2025年新高考数学复习资料平面向量——2025届高考数学二轮复习易错重难提升【新高考版】(含解析).docx
2025年新高考数学复习资料平面向量——2025届高考数学二轮复习易错重难提升【新高考版】(含解析).docx
免费
0下载
2025年新高考数学复习资料第04讲 基本不等式及其应用(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
2025年新高考数学复习资料第04讲 基本不等式及其应用(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
精品解析:上海市奉贤区2023届高三上学期一模数学试题(原卷版).docx
精品解析:上海市奉贤区2023届高三上学期一模数学试题(原卷版).docx
免费
0下载
【高考数学】备战2024年(新高考专用)专题09 立体几何(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
【高考数学】备战2024年(新高考专用)专题09 立体几何(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
2015年四川省高考数学试卷(文科).doc
2015年四川省高考数学试卷(文科).doc
免费
0下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】点点练 15.docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】点点练 15.docx
免费
9下载
高中数学高考数学10大专题技巧--专题九 平面向量的奔驰定理(教师版).docx
高中数学高考数学10大专题技巧--专题九 平面向量的奔驰定理(教师版).docx
免费
0下载
2017年高考数学试卷(文)(新课标Ⅲ)(空白卷) (2).pdf
2017年高考数学试卷(文)(新课标Ⅲ)(空白卷) (2).pdf
免费
0下载
1998年重庆高考文科数学真题及答案.doc
1998年重庆高考文科数学真题及答案.doc
免费
18下载
2011年四川高考文科数学试卷(word版)和答案.doc
2011年四川高考文科数学试卷(word版)和答案.doc
免费
11下载
2025年新高考数学复习资料第01讲 数列的基本知识与概念(六大题型)(练习)(解析版).docx
2025年新高考数学复习资料第01讲 数列的基本知识与概念(六大题型)(练习)(解析版).docx
免费
0下载
2024年高考数学试卷(新课标Ⅱ卷)(空白卷) (4).docx
2024年高考数学试卷(新课标Ⅱ卷)(空白卷) (4).docx
免费
0下载
2018年北京市高考数学试卷(理科)往年高考真题.doc
2018年北京市高考数学试卷(理科)往年高考真题.doc
免费
0下载
1993年北京高考文科数学真题及答案.doc
1993年北京高考文科数学真题及答案.doc
免费
10下载
2024年新高考数学复习资料【专项精练】第14 课 导数与函数的极值、最值-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第14 课 导数与函数的极值、最值-2024年新高考数学分层专项精练(解析版).docx
免费
0下载
2018年上海市崇明区高考数学二模试卷.doc
2018年上海市崇明区高考数学二模试卷.doc
免费
0下载
2024年新高考数学复习资料专题13 一网打尽外接球、内切球与棱切球问题 (练习)(原卷版).docx
2024年新高考数学复习资料专题13 一网打尽外接球、内切球与棱切球问题 (练习)(原卷版).docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.3 空间点、直线、平面之间的位置关系.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.3 空间点、直线、平面之间的位置关系.docx
免费
0下载
专题41平面解析几何第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题41平面解析几何第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
5下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群